

JOB NAME:	JOB #:		
LOCATION:	NMBS E.T. #1 Joist End Plate	DATE:	3/18/2025

AISC 16TH - p. 10-49 (Extended Configuration)

Holes must satisfy AISC J3.3

Horizontal Axial forces (seismic or wind) if present, to be transferred from beam to joist via tie plate

_					
Joist Plate, Fu =	58	ksi TC Hold Back Distance (H) =	<mark>6</mark> in	Joist Plate w	/ = <mark>10</mark> in
Joist Tab Plate, Fy =	36	ksi TC Angle Size =	3.5 in	Joist Plate o	l = 16 in
Joist Plate, d or w=	10	in Joist Plate Hold-Down from TC =	0.5 in		
Joist Plate Thickness, t=	0.75	in			
Joist Plate Edge Distances, de=	2	in			
e =	8	in	L _{i1} =	3	
Vertical Shear , Vu=	26	k (LRFD)	L _{i2} =	0	
Vertical Ecc. Moment , Mu=	208	k*in (LRFD)	L _{i3} =	0	
Bolt Diameter, Db =	1	in	L _{i4} =	0	
Bolt Shear Capacity φRn =	40	k (A490-N)	L _{i5} =	0	
# of Bolts, Nb=	3	Spreadsheet design limitation, max. 10 bolts)			
Spacing of Bolt Group, S=	3	in			
Vert. C.G. of Bolt Group =	3	in			
Fnv/0.9 =	75.56	ksi (Table J3.2, A490-N Bolts)			
Short Slotted Hole, Lh =	1.31	31 in (conservative design, allows for slotted holes in joist plate)			
Joist Top Chord Axial Force, V _{TC} =	39	k (LRFD)Assumes 1.5:1 End Web Slope			

Gross Plate Area, Ag = 7.5 in²

Effective Plate Area, Ae = 6.66 in² Z = 18.75 in³ (1/4t*w^2) S = 12.5 in³ (1/6t*w^2)

Bolt Shear - Elastic Vector Method: (AISC p. 7-7, 7-8)

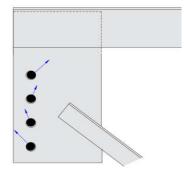
$$\begin{split} \text{Bolt Group I}_p = & 18.00 & \text{in4/in2} \\ r_{py} = & 8.67 & \text{k (Vu/\# Bolts)} \\ r_{mx} = & 34.67 & \text{k (Mu*}L_{i1}/I_p) \\ \text{Hm} = & 34.67 & \text{k (rmx*Nc) Nc} = 1 \text{ column of bolts} \\ \text{Ru} = & 35.73 & \text{k (}r_{py}^2 + r_{mx}^2)^{1/2} \\ \text{Ru} / \phi \text{Rn} = & \textbf{0.89} & \textbf{< 1.0 OK} \end{split}$$

Bolt Bearing & Tearout: (AISC J3.11)

Bearing Rnb = 104.40 k/bolt (2.4*Db*t*Fu) AISC J3-6a $L_{ch} = 1.34 \quad \text{in } (d_e - \text{Lh/2})$

Horizontal Tearout Rnt = 70.14 k/bolt (1.2*L_{ch}*t*Fu) AISC J3-6c

 $\begin{aligned} \text{Ru} = & 35.73 & \text{k (worst case bolt shear)} \\ \text{r}_{\text{mx}} = & 34.67 & \text{k (worst case horiz. bolt shear)} \end{aligned}$


 $\begin{array}{cccc} \varphi = & 0.75 & \text{(AISC J3.11)} \\ \text{Bearing Ru / } \varphi \text{Rnb} = & \textbf{0.46} & \textbf{<1.0 OK} \\ \text{Tearout r}_{\text{mx}} \text{/ } \varphi \text{Rnt} = & \textbf{0.66} & \textbf{<1.0 OK} \\ \end{array}$

Stress Ratio Results:

Bolt Shear (V&M): 0.89
Bolt Bearing & Tearout: 0.66
Shear Plate Rupture: 0.13
Shear Plate Block Shear: 0.33
Shear Plate Flexural Rupture: 0.34
Shear Plate Yielding & Flexural: 0.14

Min. Joist TC to Plate Weld:

1 /16th x 9.5 " Fillet Weld

NOTE: FOR VISUAL FORCE SCHEMATIC ONLY

JOB NAME:	JOB #:		
LOCATION:	NMBS E.T. #1 Joist End Plate	DATE:	3/18/2025

Shear Plate Rupture: (AISC J4.2)

Crushed Hole Width, W' = 1.1875 in (plate hole + 1/16" Crushed width)

Net Plastic Modulus, $Z_{net} = 14.83 \text{ in}^3 (Z - W'*t*d_{hole})$ $d_{hole} = 4.40625$

 ϕ Vn = 173.73 k (ϕ = 0.75, ϕ *.60*Fu*Ae) AISC J4-4

 ϕ Mn = 644.92 k*in (ϕ = 0.75, ϕ *Fu*Z)

Ru / ϕ Rn = **0.13** < **1.0 OK** $(Vu/\phi Vn)^2 + (Mu/\phi Mn)^2$

Shear Plate Block Shear: (AISC J4.3)

Vertical Direction

Gross Area in Shear, Agv= $6.00 ext{ in}^2 (t*(d_e+(Nb-1)*S)$

Net Area in Shear, Anv= 3.33 in² Agv-(Nb*W')*t

Note: Use of Lh for determination of Net Plate Area, allows for the slots to be in either the joist end plate or the beam tab.

Net Area in Tension, Ant= $1.01 in^2 (t^*(d_e-Lh/2))$ the joist end plate or the beam tab.

Gross Area, ϕ Rn = $141.04 k (0.75^*(0.6^*Fy^*Agy+Ubs^*Fu^*Ant))$ Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 130.70 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

Horizontal Direction

Gross Area in Shear, Agv= 3.00 in² $(2*t*d_e)$ Net Area in Shear, Anv= 2.02 in² $(2*t*d_e-Lh/2)$ Note: Use of Lh for determination of Net Plate Area, allows for the slots to be in either the joist end plate or the beam tab.

Net Area in Tension, Ant= 2.72 in (t*((Nb-1)*S-(Nb-1)*W)

Gross Area, ϕ Rn = 166.87 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 170.87 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

 ϕ Rn = 130.70 k Controls

Ru / ϕ Rn = 0.33 < 1.0 OK $(Vu^2 + Hm^2)^{1/2}/\phi$ Rn

Shear Plate Flexural Rupture: (AISC F11)

Yielding Mc = 607.5 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 142.2 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

Lateral-Torsional Buckling, Mc = 607.5 k*in AISC F11-3 Ru / ϕ Rn = 0.34 < 1.0 OK (Mu/Mc)

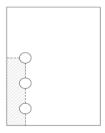
Shear Plate Yielding & Flexural Strength: (AISC 10-8)

 $Vc = 162 k (\phi = 1.0, \phi*0.6*Fy*Ag) AISC J4-3$

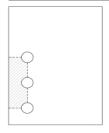
Yielding Mc = 607.5 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 142.2 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

Lateral-Torsional Buckling, Mc = 607.5 k*in AISC F11-3


Ru / ϕ Rn = **0.14** < **1.0 OK** $(Vu/Vc)^2 + (Mu/Mc)^2$ AISC 10-8

Joist Plate Weld (Angle = 0 deg. & C_1 = 1.00 E70 Electrode):


Length of Plate Weld $L_w = 9.5$ in (w-0.5")

 a_y = 0.2 AISC Table 8-4 a_y = (Weld Centroid - TC Centroid) / L_w

 k_y = 0.4 AISC Table 8-4 k_y = Weld Spacing / L_w Cy = 3.47 (y-axis weld eccentricity, AISC Table 8-4) D_{min} = 1 /16ths of an inch Fillet Weld Size (min)

NOTE: SCHEMATIC ONLY, HOLES OR PLATE MAY VARY

JOB NAME:	JOB #:		
LOCATION:	NMBS Beam Tab E.T. #1	DATE:	3/18/2025

AISC 16TH - p. 10-49 (Extended Configuration)

Holes must satisfy AISC J3.3

Horizontal Axial forces (seismic or wind) if present, to be transferred from beam to joist via tie plate

Beam Tab Plate, Fu =	58	ksi		
Beam Tab Plate, Fy =	36	ksi		
Beam Tab Plate Depth, d=	10	in		
Beam Tab Thickness, t=	0.5	in		
Beam Tab Edge Distances, d _e =	2	in	L _{i1} =	3
e =	8	in	L _{i2} =	0
Vertical Shear , Vu=	26	k (LRFD)	L _{i3} =	0
Vertical Ecc. Moment , Mu=	208	k*in (LRFD)	L _{i4} =	0
Bolt Diameter, Db =	1	in	L _{i5} =	0
Bolt Shear Capacity φRn =	40	k		
# of Bolts, Nb=	3	(Spreadsheet design limitation, max. 10 bolts)		
Spacing of Bolt Group, S=	3	in		
C.G. of Bolt Group =	3	in		
Fnv/0.9 =	75.56	ksi (Table J3.2, A490-N Bolts)		
Short Slotted Hole, Lh =	1.31	in	_	
				Stress R
Ab=	0.79	in ² (Bolt Area)		
C'=	5.89	AISC Eq. 7-17		
Mmax =	349.46	k*in (Fnv/0.9*Ab*C', Eq. 10-7)		

Max. Beam Tab Thickness, tmax = 0.58 in $(6*Mmax)/(Fy*d^2)$ AISC Eq. 10-6

Gross Plate Area, Ag = in² 5 Effective Plate Area, Ae = 3.31 in²

 $Z = 12.5 \text{ in}^3 (1/4t*d^2)$ $S_{net} = 8.33 in^3 (1/6t*d^2)$

Bolt Shear - Elastic Vector Method: (AISC p. 7-7, 7-8)

Bolt Group $I_p = 18.00 \text{ in}4/\text{in}2$ r_{py} = 8.67 k (Vu/# Bolts) $r_{mx} = 34.67 \text{ k } (Mu*L_{i1}/I_p)$

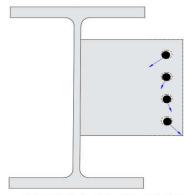
Hm = 34.67 k (rmx *Nc) Nc = 1 column of bolts

Ru = 35.73 k $(r_{py}^2 + r_{mx}^2)^{1/2}$ $Ru / \phi Rn = 0.89 < 1.0 OK$

Bolt Bearing & Tearout: (AISC J3.11)

Bearing Rnb = 69.60 k/bolt (2.4*Db*t*Fu) AISC J3-6a

 $L_{ch} = 1.34$ in $(d_e - Lh/2)$


Horizontal Tearout Rnt = 46.76 k/bolt (1.2*L_{ch}*t*Fu) AISC J3-6c

Ru = 35.73 k (worst case bolt shear) r_{mx} = 34.67 k (worst case horiz. bolt shear)

 $\phi = 0.75$ (AISC J3.11) Bearing Ru / ϕ Rnb = **0.68** < **1.0 OK** Tearout $r_{mx} / \phi Rnt = 0.99 < 1.0 OK$

Ratio Results:

Bolt Shear (V&M): 0.89 Bolt Bearing & Tearout: 0.99 Shear Tab Rupture: 0.39 Shear Tab Block Shear: 0.50 Shear Tab Flexural Rupture: 0.51 Shear Tab Yielding & Flexural: 0.32 4 /16" Tab Weld: 0.23 **Plate Stability Acceptable**

NOTE: FOR VISUAL FORCE SCHEMATIC ONLY

JOB NAME: JOB #: LOCATION: NMBS Beam Tab E.T. #1 DATE: 3/18/2025

Shear Tab Rupture: (AISC J4.2)

Crushed Hole Width, W' = 1.1875 in (plate hole + 1/16" Crushed width) Net Plastic Modulus, Z_{net} = 8.76 in³ (Summation of A*d of net plate section)

 ϕ Vn = 86.46 k (ϕ = 0.75, ϕ *.60*Fu*Ae) AISC J4-4

 ϕ Mn = 381.11 k*in (ϕ = 0.75, ϕ *Fu*Z)

Ru / ϕ Rn = **0.39** < **1.0 OK** $(Vu/\phi Vn)^2 + (Mu/\phi Mn)^2$

Shear Tab Block Shear: (AISC J4.3)

Vertical Direction

Gross Area in Shear, Agv = $4.00 ext{ in}^2 (t*(d_e+(Nb-1)*S)$ Net Area in Shear, Anv= 2.22 in² Agv-(Nb*W')*t Net Area in Tension, Ant= $0.67 ext{ in}^2 (t*(d_e-Lh/2)$

Gross Area, ϕ Rn = 94.03 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 87.14 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

Horizontal Direction

Gross Area in Shear, Agv= 2.00 in² (2*t*d_e) Net Area in Shear, Anv= $1.34 \text{ in}^2 (2*t*(d_e-*Lh/2))$ Net Area in Tension, Ant= $1.81 \text{ in}^2 (t*((Nb-1)*S-(Nb-1)*W))$

Gross Area, ϕ Rn = 111.24 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, $\phi Rn = 113.92 \text{ k} (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5$

 $\phi Rn =$ 87.14 k Controls

 $0.50 < 1.0 \text{ OK} \quad (Vu^2 + Hm^2)^{1/2} / \phi Rn$ Ru / ϕ Rn =

Shear Tab Flexural Rupture: (AISC F11)

Yielding Mc = 405.0 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 320.0 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

Lateral-Torsional Buckling, Mc = 405.0 k*in AISC F11-3 $Ru / \phi Rn = 0.51 < 1.0 OK (Mu/Mc)$

Shear Tab Yielding & Flexural Strength: (AISC 10-8)

 $Vc = 108.0 \text{ k } (\phi = 1.0, \phi*0.6*Fy*Ag) \text{ AISC J4-3}$

Yielding Mc = $405.0 \text{ k*in } (\phi = 0.9, \phi * (Fy*Z < 1.5Fy*S)) \text{ AISC F11-1}$

Lateral-Torsional Buckling Check: 320.0 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

Lateral-Torsional Buckling, Mc = 405.0 k*in AISC F11-3

Ru / ϕ Rn = 0.32 < 1.0 OK $(Vu/Vc)^2 + (Mu/Mc)^2$ AISC 10-8

Shear Tab Weld:

Min. Weld Thickness twmin = 0.22 in. $t_{wmin} = (t*Fy*3^{1/2})/(2*F_{EXX})$, $F_{EXX} = 70$ ksi Electrode, AISC Engineering Journal, Vol. 46, 2009

Weld Provided t_w = 0.25 in

GOOD Min. Plate Thickness = 0.43 in (AISC Eq. 9-7, 6.19*D/Fu)

 ϕ Rw = 111.35 k (ϕ *0.6*F_{EXX}*0.707*t_w*d*2)

 $Ru/\phi Rn =$ 0.23 < 1.0 OK

Shear Tab Stability: (Thorton and Fortney, 2011)

Laterial Torsional Buckling Check:

φRn = 83 <u>Acceptable</u> I = beam tab plate length (depth) t = tp = beam tab plate thickness a = Eccentricity 'e'

NOTE: SCHEMATIC ONLY,

HOLES MAY VARY

Lap Splice Eccentricity Check:

 $\mathcal{M}_{kh} \leq \left[\phi_{V}\left(0.5F_{X^{0}}\right) - \frac{R_{k}}{4\epsilon_{P}}\right] \frac{h^{\frac{2}{p}}}{2} \qquad \quad \phi_{V} = 1.0$ φMt,u = 20.5 k*in Mt,u = 19.5 k*in $(R*(t_p+t_i)/2$

Acceptable