

JOB NAME:	JOB #:		
LOCATION:	NMBS E.T. #3A Joist End Plate	DATE:	3/18/2025

AISC 16TH - p. 10-49 (Extended Configuration)

Holes must satisfy AISC J3.3

Horizontal Axial forces (seismic or wind) if present, to be transferred from beam to joist via tie plate

Joist Plate, Fu =	65	ksi TC Hold Back Distance (H) =	9 in	Joist Plate w = 12 in
Joist Tab Plate, Fy =	50	ksi TC Angle Size =	3.5 in	Joist Plate d = <mark>21.25</mark> in
Joist Plate, d or w=	12	in Joist Plate Hold-Down from TC =	0.5 in	
Joist Plate Thickness, t=	1	in		
Joist Plate Edge Distances, de=	2	in		
e =	11	in	L _{i1} = 5.625	
Vertical Shear , Vu=	65	k (LRFD)	$L_{i2} = 1.875$	
Vertical Ecc. Moment , Mu=	715	k*in (LRFD)	$L_{i3} = 0$	
Bolt Diameter, Db =	1.25	in	$L_{i4} = 0$	
Bolt Shear Capacity φRn =	62.7	k (A490-N)	$L_{i5} = 0$	
# of Bolts, Nb=	4	(Spreadsheet design limitation, max. 10 bolts)		
Spacing of Bolt Group, S=	3.75	in		
Vert. C.G. of Bolt Group =	5.625	in		
Fnv/0.9 =	75.56	ksi (Table J3.2, A490-N Bolts)		
Short Slotted Hole, Lh =	otted Hole, Lh = 1.63 in (conservative design, allows for slotted holes in joist plate)			
Joist Top Chord Axial Force, V _{TC} =	97.5	k (LRFD)Assumes 1.5:1 End Web Slope		

```
Gross Plate Area, Ag = 12 in<sup>2</sup>

Effective Plate Area, Ae = 10.63 in<sup>2</sup>

Z = 36 in<sup>3</sup> (1/4t*w^2)

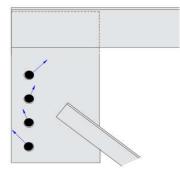
S = 24 in<sup>3</sup> (1/6t*w^2)
```

Bolt Shear - Elastic Vector Method: (AISC p. 7-7, 7-8)

$$\begin{split} \text{Bolt Group I}_p = & 70.31 & \text{in4/in2} \\ r_{py} = & 16.25 & \text{k (Vu/# Bolts)} \\ r_{mx} = & 57.20 & \text{k (Mu*L}_{11}/I_p) \\ \text{Hm} = & 57.20 & \text{k (rmx*Nc) Nc} = 1 \text{ column of bolts} \\ \text{Ru} = & 59.46 & \text{k } \left(r_{py}^2 + r_{mx}^2\right)^{1/2} \\ \text{Ru} / \phi \text{Rn} = & \textbf{0.95} & \textbf{< 1.0 OK} \end{split}$$

Bolt Bearing & Tearout: (AISC J3.11)

 $\begin{array}{lll} \text{Bearing Rnb} = & 195.00 & \text{k/bolt } (2.4*\text{Db*t*Fu}) \, \text{AISC J3-6a} \\ & L_{\text{ch}} = & 1.19 & \text{in } (d_{\text{e}} - \text{Lh/2}) \\ \text{Horizontal Tearout Rnt} = & 92.63 & \text{k/bolt } (1.2*L_{\text{ch}}*\text{t*Fu}) \, \text{AISC J3-6c} \\ & Ru = & 59.46 & \text{k } \, (\text{worst case bolt shear}) \\ & r_{\text{mx}} = & 57.20 & \text{k } \, (\text{worst case horiz. bolt shear}) \end{array}$


 $\begin{array}{ccc} \varphi = & 0.75 & \text{(AISC J3.11)} \\ \text{Bearing Ru / } \varphi \text{Rnb} = & \textbf{0.41} & \textbf{< 1.0 OK} \\ \text{Tearout r}_{\text{mx}} \text{/ } \varphi \text{Rnt} = & \textbf{0.82} & \textbf{< 1.0 OK} \\ \end{array}$

Stress Ratio Results:

Bolt Shear (V&M): 0.95
Bolt Bearing & Tearout: 0.82
Shear Plate Rupture: 0.31
Shear Plate Block Shear: 0.31
Shear Plate Flexural Rupture: 0.44
Shear Plate Yielding & Flexural: 0.23

Min. Joist TC to Plate Weld:

2 /16th x 11.5 " Fillet Weld

NOTE: FOR VISUAL FORCE SCHEMATIC ONLY

JOB NAME:	JOB #:		
LOCATION:	NMBS E.T. #3A Joist End Plate	DATE:	3/18/2025

Shear Plate Rupture: (AISC J4.2)

Crushed Hole Width, W' = 1.4375 in (plate hole + 1/16" Crushed width)

Net Plastic Modulus, $Z_{net} = 28.41 \text{ in}^3 (Z - W'*t*d_{hole})$ $d_{hole} = 5.28125$

 ϕ Vn = 310.78 k (ϕ = 0.75, ϕ *.60*Fu*Ae) AISC J4-4

 ϕ Mn = 1384.90 k*in (ϕ = 0.75, ϕ *Fu*Z)

Ru / ϕ Rn = **0.31** < **1.0 OK** $(Vu/\phi Vn)^2 + (Mu/\phi Mn)^2$

Shear Plate Block Shear: (AISC J4.3)

Vertical Direction

Gross Area in Shear, Agv= $13.25 \text{ in}^2 (t*(d_e+(Nb-1)*S))$

Net Area in Shear, Anv= 7.50 in² Agv-(Nb*W')*t Net Area in Tension, Ant= 1.19 in² (t*(d_e-Lh/2) Note: Use of Lh for determination of Net Plate Area, allows for the slots to be in either the joist end plate or the beam tab.

Gross Area, ϕ Rn = 356.02 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 277.27 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

Horizontal Direction

Gross Area in Shear, Agv= 4.00 in² $(2*t*d_e)$ Net Area in Shear, Anv= 2.38 in² $(2*t*d_e-Lh/2)$ Note: Use of Lh for determination of Net Plate Area, allows for the slots to be in either the joist end plate or the beam tab.

Net Area in Tension, Ant= 6.94 in (t*((Nb-1)*S-(Nb-1)*W)

Gross Area, ϕ Rn = 428.20 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 407.67 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

 ϕ Rn = **277.27 k** Controls

Ru / ϕ Rn = 0.31 < 1.0 OK $(Vu^2 + Hm^2)^{1/2}/\phi$ Rn

Shear Plate Flexural Rupture: (AISC F11)

Yielding Mc = 1620.0 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 132.0 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

 $\label{eq:local_local_local_local_local} Lateral-Torsional Buckling, Mc = & 1620 & k*in & AISC F11-3 \\ Ru \ / \ \varphi Rn = & \textbf{0.44} & \textbf{< 1.0 OK} & (Mu/Mc) \\ \end{cases}$

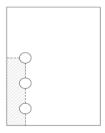
Shear Plate Yielding & Flexural Strength: (AISC 10-8)

 $Vc = 360 \text{ k } (\phi = 1.0, \phi * 0.6 * \text{Fy*Ag}) \text{ AISC J4-3}$

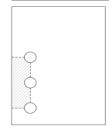
Yielding Mc = 1620 $k*in (\phi = 0.9, \phi*(Fy*Z<1.5Fy*S))$ AISC F11-1

Lateral-Torsional Buckling Check: 132.0 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

Lateral-Torsional Buckling, Mc = 1620 k*in AISC F11-3


Ru / ϕ Rn = 0.23 < 1.0 OK $(Vu/Vc)^2 + (Mu/Mc)^2$ AISC 10-8

Joist Plate Weld (Angle = 0 deg. & C_1 = 1.00 E70 Electrode):


Length of Plate Weld $L_w = 11.5$ in (w-0.5")

 a_y = 0.1 AISC Table 8-4 a_y = (Weld Centroid - TC Centroid) / L_w

 k_y = 0.3 AISC Table 8-4 k_y = Weld Spacing / L_w Cy = 3.71 (y-axis weld eccentricity, AISC Table 8-4) D_{min} = 2 /16ths of an inch Fillet Weld Size (min)

NOTE: SCHEMATIC ONLY, HOLES OR PLATE MAY VARY

JOB NAME:	JOB #:		
LOCATION:	NMBS Beam Tab E.T. #3A	DATE:	3/18/2025

AISC 16TH - p. 10-49 (Extended Configuration)

Holes must satisfy AISC J3.3

Horizontal Axial forces (seismic or wind) if present, to be transferred from beam to joist via tie plate

Beam Tab Plate, Fu =	58	ksi		
Beam Tab Plate, Fy =	36	ksi		
Beam Tab Plate Depth, d=	15.25	in		
Beam Tab Thickness, t=	0.875	in		
Beam Tab Edge Distances, d _e =	2	in	L _{i1} =	5.625
e =	11	in	L _{i2} =	1.875
Vertical Shear , Vu=	65	k (LRFD)	L _{i3} =	0
Vertical Ecc. Moment , Mu=	715	k*in (LRFD)	L _{i4} =	0
Bolt Diameter, Db =	1.25	in	L _{i5} =	0
Bolt Shear Capacity φRn =	62.7	k		
# of Bolts, Nb=	4	(Spreadsheet design limitation, max. 10 bolts)		
Spacing of Bolt Group, S=	3.75	in		
C.G. of Bolt Group =	5.625	in		
Fnv/0.9 =	75.56	ksi (Table J3.2, A490-N Bolts)		
Short Slotted Hole, Lh =	1.63	in		
			9	Stress Ra
۸h-	1 22	in ² (Bolt Area)		

Ab= 1.23 in² (Bolt Area) C'= 14.07 AISC Eq. 7-17

Mmax = 1304.62 k*in (Fnv/0.9*Ab*C', Eq. 10-7)

Max. Beam Tab Thickness, tmax = 0.93 in $(6*Mmax)/(Fy*d^2)$ AISC Eq. 10-6

Gross Plate Area, Ag = 13.3438 in² Effective Plate Area, Ae = 8.53 in²

 $Z = 50.873 \text{ in}^3 (1/4t*d^2)$ $S_{net} = 33.92 \text{ in}^3 (1/6t*d^2)$

Bolt Shear - Elastic Vector Method: (AISC p. 7-7, 7-8)

$$\begin{split} \text{Bolt Group I}_p = & 70.31 & \text{in4/in2} \\ r_{py} = & 16.25 & \text{k (Vu/# Bolts)} \\ r_{mx} = & 57.20 & \text{k (Mu*}L_{11}/I_p) \end{split}$$

Hm = 57.20 k (rmx *Nc) Nc = 1 column of bolts

Ru = 59.46 k $(r_{py}^2 + r_{mx}^2)^{1/2}$ Ru / ϕ Rn = **0.95** < **1.0 OK**

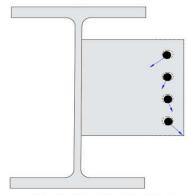
Bolt Bearing & Tearout: (AISC J3.11)

Bearing Rnb = 152.25 k/bolt (2.4*Db*t*Fu) AISC J3-6a

 $L_{ch} = 1.19$ in $(d_e - Lh/2)$

Horizontal Tearout Rnt = 72.32 k/bolt (1.2*L_{ch}*t*Fu) AISC J3-6c

 $\begin{aligned} \text{Ru} &=& 59.46 & \text{k (worst case bolt shear)} \\ \text{r}_{\text{mx}} &=& 57.20 & \text{k (worst case horiz. bolt shear)} \end{aligned}$


 ϕ = 0.75 (AISC J3.11) Bearing Ru / ϕ Rnb = **0.52** < **1.0 OK**

Tearout $r_{mx}/\phi Rnt = 1.05$ <1.5/1.2 O.K. Deformation at hole may occur

tress Ratio Results:

Bolt Shear (V&M): 0.95
Bolt Bearing & Tearout: 1.05 O.K.
Shear Tab Rupture: 0.35
Shear Tab Block Shear: 0.40
Shear Tab Flexural Rupture: 0.43
Shear Tab Yielding & Flexural: 0.24

7 /16" Tab Weld: 0.22 Plate Stability Acceptable

NOTE: FOR VISUAL FORCE SCHEMATIC ONLY

JOB NAME: JOB #: LOCATION: NMBS Beam Tab E.T. #3A DATE: 3/18/2025

Shear Tab Rupture: (AISC J4.2)

Crushed Hole Width, W' = 1.4375 in (plate hole + 1/16" Crushed width) Net Plastic Modulus, Z_{net} = 32.01 in³ (Summation of A*d of net plate section)

 ϕ Vn = 222.67 k (ϕ = 0.75, ϕ *.60*Fu*Ae) AISC J4-4

 ϕ Mn = 1392.25 k*in (ϕ = 0.75, ϕ *Fu*Z)

Ru / ϕ Rn = **0.35** < **1.0 OK** $(Vu/\phi Vn)^2 + (Mu/\phi Mn)^2$

Shear Tab Block Shear: (AISC J4.3)

Vertical Direction

Gross Area in Shear, Agv = 11.59 in $(t*(d_e+(Nb-1)*S)$ Net Area in Shear, Anv= 6.56 in² Agv-(Nb*W')*t Net Area in Tension, Ant= $1.04 \text{ in}^2 (t^*(d_e-Lh/2))$

Gross Area, ϕ Rn = 233.02 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 216.48 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

Horizontal Direction

Gross Area in Shear, Agv= 3.50 in² (2*t*d_e) Net Area in Shear, Anv= $2.08 \text{ in}^2 (2*t*(d_e-*Lh/2))$ Net Area in Tension, Ant= $6.07 ext{ in}^2 (t*((Nb-1)*S-(Nb-1)*W)$

Gross Area, ϕ Rn = 320.76 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, $\phi Rn = 318.30 \text{ k} (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5$

 ϕ Rn = 216.48 k Controls

0.40 < 1.0 OK $(Vu^2+Hm^2)^{1/2}/\phi Rn$ $Ru / \phi Rn =$

Shear Tab Flexural Rupture: (AISC F11)

Yielding Mc = 1648.3 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 219.1 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

Lateral-Torsional Buckling, Mc = 1648.3 k*in AISC F11-3 $Ru / \phi Rn = 0.43 < 1.0 OK (Mu/Mc)$

Shear Tab Yielding & Flexural Strength: (AISC 10-8)

 $Vc = 288.2 \text{ k } (\phi = 1.0, \phi*0.6*Fy*Ag) \text{ AISC J4-3}$

Yielding Mc = 1648.3 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 219.1 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

Lateral-Torsional Buckling, Mc = 1648.3 k*in AISC F11-3

Ru / ϕ Rn = **0.24** < **1.0 OK** $(Vu/Vc)^2 + (Mu/Mc)^2$ AISC 10-8

Shear Tab Weld:

Min. Weld Thickness t_{wmin} = 0.39 in. $t_{wmin} = (t*Fy*3^{1/2})/(2*F_{EXX})$, $F_{EXX} = 70$ ksi Electrode, AISC Engineering Journal, Vol. 46, 2009

Weld Provided $t_w = 0.4375$ in

GOOD Min. Plate Thickness = 0.75 in (AISC Eq. 9-7, 6.19*D/Fu)

 ϕ Rw = 297.17 k (ϕ *0.6*F_{EXX}*0.707*t_w*d*2)

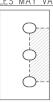
 $Ru/\phi Rn =$ 0.22 < 1.0 OK

Shear Tab Stability: (Thorton and Fortney, 2011)

Laterial Torsional Buckling Check:

 $\phi Rn = 358 \text{ k}$ <u>Acceptable</u>

I = beam tab plate length (depth) t = tp = beam tab plate thickness a = Eccentricity 'e'


Lap Splice Eccentricity Check:

φMt,u = 97.7 k*in Mt,u = 60.9 k*in $(R*(t_p+t_i)/2$ $\mathcal{M}_{k,0} \le \left[\phi_V \left(0.6 F_{SP} \right) - \frac{R_W}{\hbar \epsilon_P} \right] \frac{\hbar^2_P}{2} \qquad \phi_V = 1.0$

Acceptable

NOTE: SCHEMATIC ONLY, HOLES MAY VARY

