

Į.	IOB NAME:	JOB #:		
	LOCATION:	NMBS E.T. #4 Joist End Plate	DATE:	3/18/2025

AISC 16TH - p. 10-49 (Extended Configuration)

Holes must satisfy AISC J3.3

Horizontal Axial forces (seismic or wind) if present, to be transferred from beam to joist via tie plate

Joist Plate, Fu =	65	ksi TC Hold Back Distance (H) =	6 ir	1	Joist Plate w =	14 in
Joist Tab Plate, Fy =	50	ksi TC Angle Size =	3.5 ir	1	Joist Plate d =	<mark>25</mark> in
Joist Plate, d or w=	14	in Joist Plate Hold-Down from TC =	0.5 ir	า		
Joist Plate Thickness, t=	1	inin				
Joist Plate Edge Distances, de=	2	in				
e =	8	in	L _{i1} =	7.5		
Vertical Shear , Vu=	114	k (LRFD)	L _{i2} =	3.75		
Vertical Ecc. Moment , Mu=	912	k*in (LRFD)	L _{i3} =	0		
Bolt Diameter, Db =	1.25	in	L _{i4} =	0		
Bolt Shear Capacity φRn =	62.7	k (A490-N)	L _{i5} =	0		
# of Bolts, Nb=	5	(Spreadsheet design limitation, max. 10 bolts)				
Spacing of Bolt Group, S=	3.75	in				
Vert. C.G. of Bolt Group =	7.5	in				
Fnv/0.9 =	75.56	ksi (Table J3.2, A490-N Bolts)				
Short Slotted Hole, Lh =	1.63	in (conservative design, allows for slotted holes in joist plate)				
Joist Top Chord Axial Force, V _{TC} =	171	k (LRFD)Assumes 1.5:1 End Web Slope				

```
Gross Plate Area, Ag = 14 in<sup>2</sup>
Effective Plate Area, Ae = 12.63 in<sup>2</sup>
                       Z = 49 	 in^3 (1/4t*w^2)
                        S = 32.6667 \text{ in}^3 (1/6t*w^2)
```

Bolt Shear - Elastic Vector Method: (AISC p. 7-7, 7-8)

Bolt Group $I_p = 140.63 \text{ in}4/\text{in}2$ r_{py} = 22.80 k (Vu/# Bolts) $r_{mx} = 48.64 \text{ k } (Mu*L_{i1}/I_p)$ Hm = 48.64 k (rmx *Nc) Nc = 1 column of boltsRu = 53.72 k $(r_{py}^2 + r_{mx}^2)^{1/2}$ Ru / ϕ Rn = **0.86** < **1.0 OK**

Bolt Bearing & Tearout: (AISC J3.11)

Bearing Rnb = 195.00 k/bolt (2.4*Db*t*Fu) AISC J3-6a $L_{ch} = 1.19$ in $(d_e - Lh/2)$ Horizontal Tearout Rnt = 92.63 k/bolt (1.2*L_{ch}*t*Fu) AISC J3-6c Ru = 53.72 k (worst case bolt shear) r_{mx} = 48.64 k (worst case horiz. bolt shear) $\phi = 0.75$ (AISC J3.11)

Bearing Ru / ϕ Rnb = **0.37** < **1.0** OK Tearout $r_{mx} / \phi Rnt = 0.70 < 1.0 OK$

Stress Ratio Results:

Bolt Shear (V&M): 0.86 Bolt Bearing & Tearout: 0.70 Shear Plate Rupture: 0.31 Shear Plate Block Shear: 0.36 Shear Plate Flexural Rupture: 0.41 Shear Plate Yielding & Flexural: 0.24

Min. Joist TC to Plate Weld:

3 /16th x 13.5 " Fillet Weld

NOTE: FOR VISUAL FORCE SCHEMATIC ONLY

JOB NAME:	JOB #:		
LOCATION:	NMBS E.T. #4 Joist End Plate	DATE:	3/18/2025

Shear Plate Rupture: (AISC J4.2)

Crushed Hole Width, W' = 1.4375 in (plate hole + 1/16" Crushed width)

Net Plastic Modulus, $Z_{net} = 39.97 ext{ in}^3 ext{ (Z - W'*t*d_{hole})} ext{ } d_{hole} = 6.28125$

 ϕ Vn = 369.28 k (ϕ = 0.75, ϕ *.60*Fu*Ae) AISC J4-4

 ϕ Mn = 1948.57 k*in (ϕ = 0.75, ϕ *Fu*Z)

Ru / ϕ Rn = **0.31** < **1.0 OK** $(Vu/\phi Vn)^2 + (Mu/\phi Mn)^2$

Shear Plate Block Shear: (AISC J4.3)

Vertical Direction

Gross Area in Shear, Agv= $17.00 \text{ in}^2 (t*(d_e+(Nb-1)*S))$

Net Area in Shear, Anv= 9.81 in² Agv-(Nb*W')*t Net Area in Tension, Ant= 1.19 in² (t*(d_e-Lh/2) Note: Use of Lh for determination of Net Plate Area, allows for the slots to be in either the joist end plate or the beam tab.

Gross Area, ϕ Rn = 440.39 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 344.91 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

Horizontal Direction

Gross Area in Shear, Agv= 4.00 in² $(2*t*d_e)$ Net Area in Shear, Anv= 2.38 in² $(2*t*d_e-Lh/2)$ Note: Use of Lh for determination of Net Plate Area, allows for the slots to be in either the joist end plate or the beam tab.

Net Area in Tension, Ant= 9.25 in (t*((Nb-1)*S-(Nb-1)*W)

Gross Area, ϕ Rn = 540.94 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 520.41 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

 ϕ Rn = **344.91** k Controls

Ru / ϕ Rn = 0.36 < 1.0 OK $(Vu^2 + Hm^2)^{1/2}/\phi$ Rn

Shear Plate Flexural Rupture: (AISC F11)

Yielding Mc = 2205.0 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 112.0 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

 $\begin{array}{cccc} \mbox{Lateral-Torsional Buckling, Mc} = & 2205 & k*in & \mbox{AISC F11-3} \\ \mbox{Ru} \ / \ \phi \mbox{Rn} = & \mbox{\textbf{0.41}} & \mbox{\textbf{< 1.0 OK}} & (\mbox{Mu/Mc}) \\ \end{array}$

Shear Plate Yielding & Flexural Strength: (AISC 10-8)

Vc = 420 k ($\phi = 1.0$, $\phi * 0.6 * Fy * Ag$) AISC J4-3

Yielding Mc = 2205 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 112.0 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

Lateral-Torsional Buckling, Mc = 2205 k*in AISC F11-3

Ru / ϕ Rn = **0.24** < **1.0 OK** $(Vu/Vc)^2 + (Mu/Mc)^2$ AISC 10-8

Joist Plate Weld (Angle = 0 deg. & C_1 = 1.00 E70 Electrode):

Length of Plate Weld $L_w = 13.5$ in (w-0.5")

 $a_y = 0.1$ AISC Table 8-4 $a_y =$ (Weld Centroid - TC Centroid) / L_w

 k_y = 0.3 AISC Table 8-4 k_y = Weld Spacing / L_w Cy = 3.71 (y-axis weld eccentricity, AISC Table 8-4) D_{min} = 3 /16ths of an inch Fillet Weld Size (min)

NOTE: SCHEMATIC ONLY, HOLES OR PLATE MAY VARY

JOB NAME:	JOB #:		
LOCATION:	NMBS Beam Tab E.T. #4	Π)ΔΙΕ·	3/18/2025

AISC 16TH - p. 10-49 (Extended Configuration)

Holes must satisfy AISC J3.3

Horizontal Axial forces (seismic or wind) if present, to be transferred from beam to joist via tie plate

58	ksi		
36	ksi		
19	in		
0.875	in		
2	in	L _{i1} =	7.5
8	in	L _{i2} =	3.75
114	k (LRFD)	L _{i3} =	0
912	k*in (LRFD)	L _{i4} =	0
1.25	in	L _{i5} =	0
62.7	k		
5	(Spreadsheet design limitation, max. 10 bolts)		
3.75	in		
7.5	in		
75.56	ksi (Table J3.2, A490-N Bolts)		
1.63	in	_	
			Stress R
1.23	in ² (Bolt Area)		
21.43	AISC Eq. 7-17		
1987.46	k*in (Fnv/0.9*Ab*C', Eq. 10-7)		
	36 19 0.875 2 8 114 912 1.25 62.7 5 3.75 7.5 75.56 1.63	36 ksi 19 in 0.875 in 2 in 8 in 114 k (LRFD) 912 k*in (LRFD) 1.25 in 62.7 k 5 (Spreadsheet design limitation, max. 10 bolts) in 7.5 in 75.56 ksi (Table J3.2, A490-N Bolts) 1.63 in 1.23 in² (Bolt Area)	36 ksi 19 in 0.875 in 2 in L _{i1} = 8 in L _{i2} = 114 k (LRFD) L _{i3} = 912 k*in (LRFD) L _{i4} = 1.25 in L _{i5} = 62.7 k 5 (Spreadsheet design limitation, max. 10 bolts) 3.75 in 7.5 in 75.56 ksi (Table J3.2, A490-N Bolts) 1.63 in 1.23 in² (Bolt Area) 21.43 AISC Eq. 7-17

Max. Beam Tab Thickness, tmax = 0.92 in $(6*Mmax)/(Fy*d^2)$ AISC Eq. 10-6

Gross Plate Area, Ag = 16.625 in² Effective Plate Area, Ae = 10.61 in² $Z = 78.9688 \text{ in}^3 (1/4t*d^2)$ $S_{net} = 52.65 \text{ in}^3 (1/6t*d^2)$

Bolt Shear - Elastic Vector Method: (AISC p. 7-7, 7-8)

Bolt Group $I_p = 140.63$ in 4/in 2 r_{py} = 22.80 k (Vu/# Bolts) $r_{mx} = 48.64 \text{ k } (Mu*L_{i1}/I_p)$ Hm = 48.64 k (rmx *Nc) Nc = 1 column of bolts

Ru = 53.72 k $(r_{py}^2 + r_{mx}^2)^{1/2}$ Ru / ϕ Rn = **0.86** < **1.0 OK**

Bolt Bearing & Tearout: (AISC J3.11)

Bearing Rnb = 152.25 k/bolt (2.4*Db*t*Fu) AISC J3-6a

 $L_{ch} = 1.19$ in $(d_e - Lh/2)$

Horizontal Tearout Rnt = 72.32 k/bolt $(1.2*L_{ch}*t*Fu)$ AISC J3-6c

Ru = 53.72 k (worst case bolt shear) r_{mx} = 48.64 k (worst case horiz. bolt shear)

 $\phi = 0.75$ (AISC J3.11) Bearing Ru / ϕ Rnb = **0.47** < **1.0 OK** Tearout $r_{mx} / \phi Rnt = 0.90 < 1.0 OK$

Ratio Results:

Bolt Shear (V&M): 0.86 Bolt Bearing & Tearout: 0.90 Shear Tab Rupture: 0.32 Shear Tab Block Shear: 0.46 Shear Tab Flexural Rupture: 0.36 Shear Tab Yielding & Flexural: 0.23 7 /16" Tab Weld: 0.31 **Plate Stability Acceptable**

NOTE: FOR VISUAL FORCE SCHEMATIC ONLY

 JOB NAME:
 JOB #:

 LOCATION:
 NMBS Beam Tab E.T. #4
 DATE:
 3/18/2025

NOTE: SCHEMATIC ONLY,

HOLES MAY VARY

Shear Tab Rupture: (AISC J4.2)

Crushed Hole Width, W' = 1.4375 in (plate hole + 1/16" Crushed width) Net Plastic Modulus, $Z_{net} = 53.25$ in (Summation of A*d of net plate section)

 ϕ Vn = 276.90 k (ϕ = 0.75, ϕ *.60*Fu*Ae) AISC J4-4

 ϕ Mn = 2316.42 k*in (ϕ = 0.75, ϕ *Fu*Z)

Ru / ϕ Rn = **0.32 < 1.0 OK** $(Vu/\phi Vn)^2 + (Mu/\phi Mn)^2$

Shear Tab Block Shear: (AISC J4.3)

Vertical Direction

Gross Area in Shear, Agv= 14.88 in² (t*(d_e+(Nb-1)*S) Net Area in Shear, Anv= 8.59 in² Agv-(Nb*W')*t Net Area in Tension, Ant= 1.04 in² (t*(d_e-Lh/2)

Gross Area, ϕ Rn = 286.17 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 269.29 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

Horizontal Direction

Gross Area, ϕ Rn = 408.78 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 406.32 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

 ϕ Rn = 269.29 k Controls

 $Ru / \phi Rn = 0.46 < 1.0 \text{ OK} (Vu^2 + Hm^2)^{1/2} / \phi Rn$

Shear Tab Flexural Rupture: (AISC F11)

Yielding Mc = 2558.6 $k*in (\phi = 0.9, \phi*(Fy*Z<1.5Fy*S))$ AISC F11-1

Lateral-Torsional Buckling Check: 198.5 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

Lateral-Torsional Buckling, Mc = 2558.6 k*in AISC F11-3 $\text{Ru} / \phi \text{Rn} = 0.36 \text{ < } 1.0 \text{ OK}$ (Mu/Mc)

Shear Tab Yielding & Flexural Strength: (AISC 10-8)

 $Vc = 359.1 \text{ k } (\phi = 1.0, \phi*0.6*Fy*Ag) \text{ AISC J4-3}$

Yielding Mc = 2558.6 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 198.5 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

Lateral-Torsional Buckling, Mc = 2558.6 k*in AISC F11-3

Ru / ϕ Rn = **0.23** < **1.0 OK** $(Vu/Vc)^2 + (Mu/Mc)^2$ AISC 10-8

Shear Tab Weld:

Min. Weld Thickness $t_{wmin} = (t*Fy*3^{1/2})/(2*F_{EXX})$, $F_{EXX} = 70$ ksi Electrode, AISC Engineering Journal, Vol. 46, 2009

Weld Provided $t_w = 0.4375$ in

Min. Plate Thickness = 0.75 in (AISC Eq. 9-7, 6.19*D/Fu) GOOD

 ϕ Rw = 370.25 k (ϕ *0.6*F_{EXX}*0.707*t_w*d*2)

 $Ru / \phi Rn = 0.31 < 1.0 OK$

Shear Tab Stability: (Thorton and Fortney, 2011)

Laterial Torsional Buckling Check:

 ϕ Rn = 843 k Acceptable $R_n = 1500\pi \frac{h^3}{a^2}$ I = beam tab plate length (depth) t = tp = beam tab plate thickness a = Eccentricity 'e'

Lap Splice Eccentricity Check:

ntricity Check: $\phi \text{Mt}, u = 107.2 \text{ k*in}$ $\text{Mt}, u = 106.9 \text{ k*in } (\text{R*}(t_0 + t_i)/2)$ $\text{Mt}, u = 106.9 \text{ k*in } (\text{R*}(t_0 + t_i)/2)$

(LJ

<u>Acceptable</u>