

A Steel Dynamics Company

JOB NAME:	JOB #:		
LOCATION:	NMBS U.F. #1 Joist End Plate	DATE:	3/18/2025

AISC 16TH - p. 10-49 (Extended Configuration)

Holes must satisfy AISC J3.3

Horizontal Axial forces (seismic or wind) if present, to be transferred from beam to joist via tie plate

Joist Plate, Fu =	58	ksi TC Hold Back Distance (H) =	6 in		Joist Plate w =	12 in
Joist Tab Plate, Fy =	36	ksi TC Angle Size =	3.5 in		Joist Plate d =	10 in
Joist Plate, d or w=	10	in Joist Plate Hold-Down from TC =	0.75 in			
Joist Plate Thickness, t=	0.75	inin				
Joist Plate Edge Distances, de=	2	in				
e =	3.25	in	L _{i1} =	3		
Vertical Shear , Vu=	62	k (LRFD)	L _{i2} =	0		
Vertical Ecc. Moment , Mu=	201.5	k*in (LRFD)	L _{i3} =	0		
Bolt Diameter, Db =	1	in	L _{i4} =	0		
Bolt Shear Capacity φRn =	40	k (A490-N)	L _{i5} =	0		
# of Bolts, Nb=	3	(Spreadsheet design limitation, max. 10 bolts)				
Spacing of Bolt Group, S=	3	in				
Vert. C.G. of Bolt Group =	3	in				
Fnv/0.9 =	75.56	6 ksi (Table J3.2, A490-N Bolts)				
Short Slotted Hole, Lh =	1.31	in (conservative design, allows for slotted holes in joist plate)				
Joist Top Chord Axial Force, V _{TC} =	93	k (LRFD)Assumes 1.5:1 End Web Slope				

Gross Plate Area, Ag = 7.5 in²

Effective Plate Area, Ae = 6.66 in² Z = 18.75 in³ (1/4t*w^2) S = 12.5 in³ (1/6t*w^2)

Bolt Shear - Elastic Vector Method: (AISC p. 7-7, 7-8)

$$\begin{split} \text{Bolt Group I}_p = & 18.00 & \text{in4/in2} \\ r_{py} = & 20.67 & \text{k (Vu/# Bolts)} \\ r_{mx} = & 33.58 & \text{k (Mu*L}_{11}/I_p) \\ \text{Hm} = & 33.58 & \text{k (rmx *Nc) Nc} = 1 \text{ column of bolts} \end{split}$$

Ru = 39.43 k $(r_{py}^2 + r_{mx}^2)^{1/2}$

Ru / φRn = **0.99 < 1.0 OK**

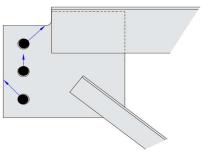
Bolt Bearing & Tearout: (AISC J3.11)

Bearing Rnb = 104.40 k/bolt (2.4*Db*t*Fu) AISC J3-6a

 $L_{ch} = 1.34$ in $(d_e - Lh/2)$

Horizontal Tearout Rnt = 70.14 k/bolt $(1.2*L_{ch}*t*Fu)$ AISC J3-6c

 $\begin{aligned} Ru &= & 39.43 & k \text{ (worst case bolt shear)} \\ r_{mx} &= & 33.58 & k \text{ (worst case horiz. bolt shear)} \end{aligned}$


 $\phi = 0.75$ (AISC J3.11)

Bearing Ru / ϕ Rnb = 0.50 < 1.0 OK Tearout r_{mx} / ϕ Rnt = 0.64 < 1.0 OK Stress Ratio Results:

Bolt Shear (V&M): 0.99
Bolt Bearing & Tearout: 0.64
Shear Plate Rupture: 0.22
Shear Plate Block Shear: 0.54
Shear Plate Flexural Rupture: 0.33
Shear Plate Yielding & Flexural: 0.26

Min. Joist TC to Plate Weld:

3 /16th x 7 " Fillet Weld

NOTE: FOR VISUAL FORCE SCHEMATIC ONLY

A Steel Dynamics Company

JOB NAME:	JOB #:		
LOCATION:	NMBS U.F. #1 Joist End Plate	DATE:	3/18/2025

Shear Plate Rupture: (AISC J4.2)

Crushed Hole Width, W' = 1.1875 in (plate hole + 1/16" Crushed width)

Net Plastic Modulus, $Z_{net} = 14.83 \text{ in}^3 (Z - W'*t*d_{hole})$ $d_{hole} = 4.40625$

 ϕ Vn = 173.73 k (ϕ = 0.75, ϕ *.60*Fu*Ae) AISC J4-4

 ϕ Mn = 644.92 k*in (ϕ = 0.75, ϕ *Fu*Z)

Ru / ϕ Rn = **0.22** < **1.0 OK** $(Vu/\phi Vn)^2 + (Mu/\phi Mn)^2$

Shear Plate Block Shear: (AISC J4.3)

Vertical Direction

Gross Area in Shear, Agv= $6.00 ext{ in}^2 (t*(d_e+(Nb-1)*S))$

Net Area in Shear, Anv= 3.33 in² Agv-(Nb*W')*t Net Area in Tension, Ant= 1.01 in² (t*(d_e-Lh/2) Note: Use of Lh for determination of Net Plate Area, allows for the slots to be in either the joist end plate or the beam tab.

Gross Area, ϕ Rn = 141.04 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 130.70 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

Horizontal Direction

Gross Area in Shear, Agv= 3.00 in² $(2*t*d_e)$ Net Area in Shear, Anv= 2.02 in² $(2*t*d_e-Lh/2)$ Note: Use of Lh for determination of Net Plate Area, allows for the slots to be in either the joist end plate or the beam tab.

Net Area in Tension, Ant= 2.72 in² (t*((Nb-1)*S-(Nb-1)*W)

Gross Area, ϕ Rn = 166.87 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 170.87 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

 ϕ Rn = 130.70 k Controls

Ru / ϕ Rn = 0.54 < 1.0 OK $(Vu^2 + Hm^2)^{1/2}/\phi$ Rn

Shear Plate Flexural Rupture: (AISC F11)

Yielding Mc = 607.5 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 57.8 Lb*d/t^2, Lb = e <0.08*E/Fy Lateral Torsional Buckling does not apply

Lateral-Torsional Buckling, Mc = N/A k*in

 $Ru / \phi Rn = 0.33 < 1.0 OK (Mu/Mc)$

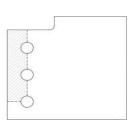
Shear Plate Yielding & Flexural Strength: (AISC 10-8)

 $Vc = 162 k (\phi = 1.0, \phi*0.6*Fy*Ag) AISC J4-3$

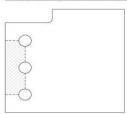
Yielding Mc = 607.5 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 57.8 Lb*d/t^2, Lb = e <0.08*E/Fy Lateral Torsional Buckling does not apply

Lateral-Torsional Buckling, Mc = N/A k*in


Ru / ϕ Rn = **0.26 < 1.0 OK** $(Vu/Vc)^2 + (Mu/Mc)^2$ AISC 10-8

Joist Plate Weld (Angle = 0 deg. & C_1 = 1.00 E70 Electrode):


Length of Plate Weld $L_w = 7$ in (w-(H-1.25)-0.25")

 a_y = 0.2 AISC Table 8-4 a_y = (Weld Centroid - TC Centroid) / L_w

 k_y = 0.4 AISC Table 8-4 k_y = Weld Spacing / L_w Cy = 3.47 (y-axis weld eccentricity, AISC Table 8-4) D_{min} = 3 /16ths of an inch Fillet Weld Size (min)

NOTE: SCHEMATIC ONLY, HOLES OR PLATE MAY VARY

JOB NAME:	JOB #:		
LOCATION:	NMBS Beam Tab U.F. #1, U.F. #1A	DATE:	3/18/2025

 $L_{i1} =$

 $L_{i3} =$

0

0

AISC 16TH - p. 10-49 (Extended Configuration)

Holes must satisfy AISC J3.3

Horizontal Axial forces (seismic or wind) if present, to be transferred from beam to joist via tie plate

Beam Tab Plate, Fu =	58	ksi
Beam Tab Plate, Fy =	36	ksi
Beam Tab Plate Depth, d=	10	in
Beam Tab Thickness, t=	0.5	in
Beam Tab Edge Distances, d _e =	2	in
e =	3.25	in
Vertical Shear , Vu=	62	k (LRFD)
Vertical Ecc. Moment , Mu=	201.5	k*in (LRFD)
Bolt Diameter, Db =	1	in
Bolt Shear Capacity φRn =	40	k
# of Bolts, Nb=	3	(Spreadsheet design limitation, max. 10 bolts)
Spacing of Bolt Group, S=	3	in
C.G. of Bolt Group =	3	in
Fnv/0.9 =	75.56	ksi (Table J3.2, A490-N Bolts)
Short Slotted Hole, Lh =	1.31	in
Ab=	0.79	in ² (Bolt Area)
C'=	5.89	AISC Eq. 7-17
Mmax =	349.46	k*in (Fnv/0.9*Ab*C', Eq. 10-7)
Max. Beam Tab Thickness, tmax =	0.58	in (6*Mmax)/(Fy*d ²) AISC Eq. 10-6
Gross Plate Area, Ag =	5	in ²
Effective Plate Area, Ae =	3.31	in ²
Z =	12.5	in ³ (1/4t*d^2)
S _{net} =	8.33	in ³ (1/6t*d^2)

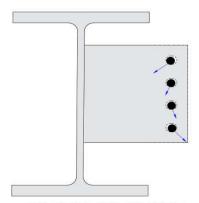
Stress Ratio Results:

Bolt Shear (V&M): 0.99
Bolt Bearing & Tearout: 0.96
Shear Tab Rupture: 0.79
Shear Tab Block Shear: 0.81
Shear Tab Flexural Rupture: 0.50
Shear Tab Yielding & Flexural: 0.58
4 /16" Tab Weld: 0.56

Bolt Shear - Elastic Vector Method: (AISC p. 7-7, 7-8)

Hm = 33.58 k (rmx *Nc) Nc = 1 column of bolts

 $Ru = 39.43 k (r_{py}^2 + r_{mx}^2)^{1/2}$ Ru / ϕ Rn = **0.99 < 1.0 OK**


Bolt Bearing & Tearout: (AISC J3.11)

Bearing Rnb = 69.60 k/bolt (2.4*Db*t*Fu) AISC J3-6a

 $L_{ch} = 1.34 \text{ in } (d_e - Lh/2)$

Horizontal Tearout Rnt = 46.76 k/bolt $(1.2*L_{ch}*t*Fu)$ AISC J3-6c

 $\begin{array}{lll} Ru = & 39.43 & k \; (worst \; case \; bolt \; shear) \\ r_{mx} = & 33.58 & k \; (worst \; case \; horiz. \; bolt \; shear) \end{array}$

NOTE: FOR VISUAL FORCE SCHEMATIC ONLY

A Steel Dynamics Company

 JOB NAME:
 JOB #:

 LOCATION:
 NMBS Beam Tab U.F. #1, U.F. #1A
 DATE:
 3/18/2025

NOTE: SCHEMATIC ONLY,

HOLES MAY VARY

Shear Tab Rupture: (AISC J4.2)

Crushed Hole Width, W' = 1.1875 in (plate hole + 1/16" Crushed width) Net Plastic Modulus, $Z_{net} = 8.76$ in (Summation of A*d of net plate section)

 ϕ Vn = 86.46 k (ϕ = 0.75, ϕ *.60*Fu*Ae) AISC J4-4

 ϕ Mn = 381.11 k*in (ϕ = 0.75, ϕ *Fu*Z)

Ru / ϕ Rn = **0.79 < 1.0 OK** $(Vu/\phi Vn)^2 + (Mu/\phi Mn)^2$

Shear Tab Block Shear: (AISC J4.3)

Vertical Direction

Gross Area, ϕ Rn = 94.03 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 87.14 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

Horizontal Direction

Gross Area in Shear, Agv= 2.00 in² $(2*t*d_e)$ Net Area in Shear, Anv= 1.34 in² $(2*t*(d_e-*Lh/2))$

Net Area in Tension, Ant= 1.81 in² (t*((Nb-1)*S-(Nb-1)*W)

Gross Area, ϕ Rn = 111.24 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 113.92 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

 ϕ Rn = **87.14 k** Controls

Ru / ϕ Rn = 0.81 < 1.0 OK $(Vu^2 + Hm^2)^{1/2}/\phi$ Rn

Shear Tab Flexural Rupture: (AISC F11)

Yielding Mc = 405.0 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 130.0 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

 $\begin{array}{cccc} \mbox{Lateral-Torsional Buckling, Mc} = & 405.0 & k*in & \mbox{AISC F11-3} \\ \mbox{Ru} \ / \ \varphi \mbox{Rn} = & \mbox{\textbf{0.50}} & \mbox{\textbf{< 1.0 OK}} & (\mbox{Mu/Mc}) \\ \end{array}$

Shear Tab Yielding & Flexural Strength: (AISC 10-8)

 $Vc = 108.0 \text{ k } (\phi = 1.0, \phi*0.6*Fy*Ag) \text{ AISC J4-3}$

Yielding Mc = 405.0 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 130.0 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

Lateral-Torsional Buckling, Mc = 405.0 k*in AISC F11-3

Ru / ϕ Rn = **0.58** < **1.0 OK** $(Vu/Vc)^2 + (Mu/Mc)^2$ AISC 10-8

Shear Tab Weld:

Min. Weld Thickness $t_{wmin} = 0.22$ in. $t_{wmin} = (t^*Fy^*3^{1/2})/(2^*F_{EXX})$, $F_{EXX} = 70$ ksi Electrode, AISC Engineering Journal, Vol. 46, 2009

Weld Provided t_w = 0.25 in

Min. Plate Thickness = 0.43 in (AISC Eq. 9-7, 6.19*D/Fu) GOOD

 $\phi Rw = 111.35 \text{ k} (\phi * 0.6 * F_{EXX} * 0.707 * t_w * d * 2)$

Ru / ϕ Rn = 0.56 < 1.0 OK