

$\langle \rangle$			
NEW MILLENNIUM			
A Steel Dynamics Company			
JOB NAME:	JOB #:		
LOCATION:	NMBS U.F. #2 Joist End Plate	DATE:	3/18/2025

AISC 16TH - p. 10-49 (Extended Configuration) Holes must satisfy AISC J3.3

Horizontal Axial forces (seismic or wind) if present, to be transferred from beam to joist via tie plate

Joist Plate, Fu =	58	ksi TC Hold Back Distance (H) =	<mark>6</mark> in	J	oist Plate w =	<mark>12</mark> in
Joist Tab Plate, Fy =	36	ksi TC Angle Size =	3.5 in	J	oist Plate d =	<mark>13</mark> in
Joist Plate, d or w=	12	in Joist Plate Hold-Down from TC = 0	0.75 in			
Joist Plate Thickness, t=	1	in				
Joist Plate Edge Distances, de=	2	in				
e =	3.25	in 	L _{i1} =	4.5		
Vertical Shear , Vu=	97	k (LRFD)	L _{i2} =	1.5		
Vertical Ecc. Moment , Mu=	315.25	k*in (LRFD)	L _{i3} =	0		
Bolt Diameter, Db =	1	in	L _{i4} =	0		
Bolt Shear Capacity ϕ Rn =	40	k (A490-N)	L _{i5} =	0		
# of Bolts, Nb=	4	(Spreadsheet design limitation, max. 10 bolts)				
Spacing of Bolt Group, S=	3	in				
Vert. C.G. of Bolt Group =	4.5					
Fnv/0.9 =	/5.56	ksi (Table J3.2, A490-N Bolts)		\		
Short Slotted Hole, Ln =	1.31	In (conservative design, allows for slotted noies in joint (LRED). Assumes 1 5:1 End Web Slope	st plate)		
Joist Top chord Axial Force, v_{TC} =	145.5	(LIT D)Assumes 1.5.1 Lita web slope				
Gross Plate Area. Ag =	12	in ²	Str	ess Ratio Result	s:	
Effective Plate Area Ae =	10.88	in ²		Bolt S	hear (V&M)	0.99
7 -	36	in ³ (1/4t*w^2)		Bolt Bearin		0.55
2 -	24	$\ln^3(1/6t^*w^2)$		Shoar D	ata Buntura	0.45
5 -	24			Shear Plate	Block Shear	0.18
Bolt Shear - Elastic Vect	or Metho	d: (AISC p. 7-7, 7-8)	9	Shear Plate Flex	ural Rupture:	0.27
Bolt Group I _p =	45.00	in4/in2	Sh	ear Plate Yieldir	g & Flexural:	0.21
r =	24.25	k (Vu/# Bolts)	Mi	n. Joist TC to Pla	te Weld:	
r =	31 53	$k (Mu*L_{1}/L)$		4 /16th x	7 " Fillet W	eld
·mx Hm =	31.55	k (rmx *Nc) Nc = 1 column of holts		4 / 10th X	7 11100 11	ciu
	39 77	$k (r^{2} + r^{2})^{1/2}$				
Bu / dBn =	0 00					
hay yith	0.55					
Bolt Bearing & Tearout:	(AISC J3.	11)		<u>j</u>]	
Bearing Rnb =	139.20	k/bolt (2.4*Db*t*Fu) AISC J3-6a				
L _{ch} =	1.34	in (d _e - Lh/2)				
Horizontal Tearout Rnt =	93.53	k/bolt (1.2*L _{ch} *t*Fu) AISC J3-6c		<u>t</u>		
Ru =	39.77	k (worst case bolt shear)				
r _{mx} =	31.53	k (worst case horiz. bolt shear)				
					/ /	
φ =	0.75	(AISC J3.11)				
Bearing Ru / ϕ Rnb =	0.38	< 1.0 OK				
Tearout r _{mx} / ϕ Rnt =	0.45	< 1.0 OK	NOT	E: FOR VISUAL	FORCE SCHE	MATIC ONLY

NEW MILLENNIUM

A Steel Dynamics Company

JOB NAME:	JOB #:		
LOCATION:	NMBS U.F. #2 Joist End Plate	DATE:	3/18/2025

Shear Plate Rupture: (AISC J4.2) Crushed Hole Width, W' = 1.1875 in (plate hole + 1/16" Crushed width) Net Plastic Modulus, $Z_{net} = 29.58 \text{ in}^3 (Z - W' * t * d_{hole})$ d_{hole} = 5.40625 ϕ Vn = 283.84 k (ϕ = 0.75, ϕ *.60*Fu*Ae) AISC J4-4 ϕ Mn = 1286.73 k*in (ϕ = 0.75, ϕ *Fu*Z) Ru / ϕ Rn = 0.18 < 1.0 OK $(Vu/\phi Vn)^2 + (Mu/\phi Mn)^2$ Shear Plate Block Shear: (AISC J4.3) Vertical Direction Gross Area in Shear, Agv = 11.00 in² (t*(d_e+(Nb-1)*S) Note: Use of Lh for determination of Net Net Area in Shear, Anv= 6.25 in² Agv-(Nb*W')*t Plate Area, allows for the slots to be in either the joist end plate or the beam tab. Net Area in Tension, Ant= 1.34 in² (t*(d_e-Lh/2)) Gross Area, ϕ Rn = 236.65 k (0.75*(0.6*Fy*Agy+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line Net Area, ϕ Rn = 221.58 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5 Horizontal Direction Note: Use of Lh for determination of Net Gross Area in Shear, Agv= 4.00 in² (2*t*d_e) Plate Area, allows for the slots to be in either the joist end plate or the beam tab. Net Area in Shear, Anv= 2.69 $in^2 (2*t*(d_e-Lh/2))$ Net Area in Tension, Ant= 5.44 in² (t*((Nb-1)*S-(Nb-1)*W) Gross Area, ϕ Rn = 301.33 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line Net Area, ϕ Rn = 306.68 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5 φRn = 221.58 k Controls 0.46 < 1.0 OK (Vu²+Hm²)^{1/2}/∲Rn

NOTE: SCHEMATIC ONLY, HOLES OR PLATE MAY VARY

Shear Plate Flexural Rupture: (AISC F11)

Yielding Mc =1166.4k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1</th>Lateral-Torsional Buckling Check:39.0Lb*d/t^2, Lb = e<0.08*E/Fy Lateral Torsional Buckling does not apply</td>Lateral-Torsional Buckling, Mc =N/Ak*inRu / ϕ Rn =0.27<1.0 OK (Mu/Mc)</td>

Shear Plate Yielding & Flexural Strength: (AISC 10-8)

Joist Plate Weld (Angle = 0 deg. & C₁ = 1.00 E70 Electrode):

Length of Plate Weld L_w =	7 in (w-(H-1.25)-	0.25")
a _y =	0.2 AISC Table 8-4	a _y = (Weld Centroid - TC Centroid) / L
k _y =	0.4 AISC Table 8-4	k_y = Weld Spacing / L_w
Cy =	3.47 (y-axis weld ecc	entricity, AISC Table 8-4)
D _{min} =	4 /16ths of an inc	h Fillet Weld Size (min)

$\langle o \rangle$			
NEW MILLENNIUM A Steel Dynamics Company			
JOB NAME:	JOB #:		
LOCATION:	NMBS Beam Tab U.F. #2, U.F. #2A	DATE:	3/18/2025

AISC 16TH - p. 10-49 (Extended Configuration)

Holes must satisfy AISC J3.3

Horizontal Axial forces (seismic or wind) if present, to be transferred from beam to joist via tie plate

Beam Tab Plate, Fu =	58	ksi					
Beam Tab Plate, Fy =	36	ksi					
Beam Tab Plate Depth, d=	13	in					
Beam Tab Thickness, t=	0.625	in					
Beam Tab Edge Distances, d _e =	2	in	L _{i1} =	4.5			
e =	3.25	in	L _{i2} =	1.5			
Vertical Shear , Vu=	97	k (LRFD)	L _{i3} =	0			
Vertical Ecc. Moment , Mu=	315.25	k*in (LRFD)	L _{i4} =	0			
Bolt Diameter, Db =	1	in	L _{i5} =	0			
Bolt Shear Capacity ϕ Rn =	40	k					
# of Bolts, Nb=	4	(Spreadsheet design limitation, max. 10 bolts)					
Spacing of Bolt Group, S=	3	in					
C.G. of Bolt Group =	4.5	in					
Fnv/0.9 =	75.56	ksi (Table J3.2, A490-N Bolts)					
Short Slotted Hole, Lh =	1.31	in	_				
			1	Stress Rati	o Results:		
Ab=	0.79	in ² (Bolt Area)			Bolt She	ar (V&M):	0.99
C'=	11.26	AISC Eq. 7-17			Bolt Bearing &	& Tearout:	0.72
Mmax =	667.96	k*in (Fnv/0.9*Ab*C', Eq. 10-7)			Shear Tal	b Rupture:	0.66
Max. Beam Tab Thickness, tmax =	0.66	in (6*Mmax)/(Fy*d ²) AISC Eq. 10-6			Shear Tab Bl	ock Shear:	0.74
				Shea	ar Tab Flexura	l Rupture:	0.37
Gross Plate Area, Ag =	8.125	in ²		Shear	Tab Yielding &	& Flexural:	0.44
Effective Plate Area, Ae =	5.31	in ²			5 /16"	Tab Weld:	0.54
Z =	26.4063	in ³ (1/4t*d^2)					
S _{net} =	17.60	in ³ (1/6t*d^2)					
Bolt Shear - Elastic Vect	or Metho	d: (AISC p. 7-7, 7-8)					
Bolt Group I _p =	45.00	in4/in2					
r _{py} =	24.25	k (Vu/# Bolts)					
r _{mx} =	31.53	k (Mu*L _{i1} /I _p)					
Hm =	31.53	k (rmx *Nc) Nc = 1 column of bolts					
Ru =	39.77	$k (r_{ny}^{2} + r_{mx}^{2})^{1/2}$		[
Ru /	0.99	< 1.0 OK			\neg		
Bolt Bearing & Tearout:	(AISC J3.	11)					•
Bearing Rnb =	87.00	k/bolt (2.4*Db*t*Fu) AISC J3-6a					1
L _{ch} =	1.34	in (d _e - Lh/2)					•
Horizontal Tearout Rnt =	58.45	k/bolt (1.2*L _{ch} *t*Fu) AISC J3-6c					
							1
Ru =	39.77	k (worst case bolt shear)					۲
r _{mx} =	31.53	k (worst case horiz. bolt shear)			<u></u>		
$\phi =$	0.75	(AISC J3.11)					
Bearing Ru / ϕ Rnb =	0.61	< 1.0 OK					
Tearout r _{mx} / ϕ Rnt =	0.72	< 1.0 OK		NOTO			

NOTE: FOR VISUAL FORCE SCHEMATIC ONLY

NEW MILLENNIUM

A Steel Dynamics Company

JOB NAME: LOCATION: JOB #: NMBS Beam Tab U.F. #2, U.F. #2A

DATE:

3/18/2025

Shear Tab Rupture: (AISC J4.2) Crushed Hole Width, W' = 1.1875 in (plate hole + 1/16" Crushed width) Net Plastic Modulus, $Z_{net} = 17.50$ in³ (Summation of A*d of net plate section) ϕ Vn = 138.66 k (ϕ = 0.75, ϕ *.60*Fu*Ae) AISC J4-4 ϕ Mn = 761.25 k*in (ϕ = 0.75, ϕ *Fu*Z) Ru / ϕ Rn = 0.66 < 1.0 OK $(Vu/\phi Vn)^2 + (Mu/\phi Mn)^2$ Shear Tab Block Shear: (AISC J4.3) Vertical Direction Gross Area in Shear, Agv= 6.88 in² (t*(d_e+(Nb-1)*S) Net Area in Shear, Anv= 3.91 in² Agv-(Nb*W')*t Net Area in Tension, Ant= 0.84 in^2 (t*(d_e-Lh/2) Gross Area, $\phi Rn = 147.91 \text{ k} (0.75^{*}(0.6^{*}Fy^{*}Agv+Ubs^{*}Fu^{*}Ant))$ Ubs = 1.0 for single bolt line Net Area, $\phi Rn = 138.49 \text{ k} (0.75^{*}(0.6^{*}Fu^{*}Anv+Ubs^{*}Fu^{*}Ant)) \text{ AISC J4-5}$ NOTE: SCHEMATIC ONLY, Horizontal Direction HOLES MAY VARY Gross Area in Shear, Agv = 2.50 in² (2*t*d_e) Net Area in Shear, Anv= 1.68 in² (2*t*(d_e-*Lh/2) Net Area in Tension, Ant= 3.40 in² (t*((Nb-1)*S-(Nb-1)*W) Gross Area, $\phi Rn = 188.33 \text{ k} (0.75^{*}(0.6^{*}\text{Fy}^{*}\text{Agv}+\text{Ubs}^{*}\text{Fu}^{*}\text{Ant}))$ Ubs = 1.0 for single bolt line Net Area, ϕ Rn = 191.67 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5 φRn = 138.49 k Controls **0.74 < 1.0 OK** $(Vu^2 + Hm^2)^{1/2}/\phi Rn$ Shear Tab Flexural Rupture: (AISC F11) Yielding Mc = 855.6 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1 Lateral-Torsional Buckling Check: 108.2 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3 Lateral-Torsional Buckling, Mc = 855.6 k*in AISC F11-3 Ru / ϕ Rn = 0.37 < 1.0 OK (Mu/Mc) Shear Tab Yielding & Flexural Strength: (AISC 10-8) Vc = 175.5 k (ϕ = 1.0, ϕ *0.6*Fy*Ag) AISC J4-3 Yielding Mc = 855.6 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1 Lateral-Torsional Buckling Check: 108.2 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3 Lateral-Torsional Buckling, Mc = 855.6 k*in AISC F11-3 <1.0 OK (Vu/Vc)²+(Mu/Mc)² AISC 10-8 $Ru / \phi Rn = 0.44$ Shear Tab Weld: 0.28 in. t_{wmin} = (t*Fy*3^{1/2})/(2*F_{EXX}), F_{EXX} = 70ksi Electrode, AISC Engineering Journal, Vol. 46, 2009 Min. Weld Thickness t_{wmin} = Weld Provided $t_w = -0.3125$ in Min. Plate Thickness = 0.53 in (AISC Eq. 9-7, 6.19*D/Fu) GOOD $\phi Rw =$ 180.95 k (ϕ *0.6*F_{EXX}*0.707*t_w*d*2) 0.54 < 1.0 OK