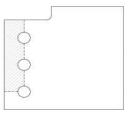


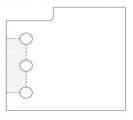
$\langle \phi \rangle$			
A Steel Dynamics Company			
JOB NAME:	JOB #:		
LOCATION:	NMBS U.F. #3 Joist End Plate	DATE:	3/18/2025

AISC 16TH - p. 10-49 (Extended Configuration) Holes must satisfy AISC J3.3

Horizontal Axial forces (seismic or wind) if present, to be transferred from beam to joist via tie plate


Joist Plate, Fu =	58	ksi TC Hold Back Distance (H) =	<mark>6</mark> in Joist Plate w = 14 in
Joist Tab Plate, Fy =	36	ksi TC Angle Size =	3.5 in Joist Plate d = 15.25 in
Joist Plate, d or w=	14	in Joist Plate Hold-Down from TC =	0.75 in
Joist Plate Thickness, t=	1	in	
Joist Plate Edge Distances, de=	2	in	
e =	3.25	in	L _{i1} = 5.625
Vertical Shear , Vu=	145	k (LRFD)	L _{i2} = 1.875
Vertical Ecc. Moment , Mu=	471.25	k*in (LRFD)	L _{i3} = 0
Bolt Diameter, Db =	1.25	in	L _{i4} = 0
Bolt Shear Capacity ϕ Rn =	62.7	k (A490-N)	L ₁₅ = 0
# of Bolts, Nb=	4	(Spreadsheet design limitation, max. 10 bolts)	
Spacing of Bolt Group, S=	3.75	in	
Vert. C.G. of Bolt Group =	5.625	in	
Fnv/0.9 =	75.56	ksi (Table J3.2, A490-N Bolts)	
Short Slotted Hole, Lh =	1.63	in (conservative design, allows for slotted holes in joi	st plate)
Joist Top Chord Axial Force, V_{TC} =	217.5	k (LRFD)Assumes 1.5:1 End Web Slope	
Gross Plate Area, Ag =	14	in ²	Stress Ratio Results:
Effective Plate Area, Ae =	12.63	in ²	Bolt Shear (V&M): 0.83
Z=	49	in ³ (1/4t*w^2)	Bolt Bearing & Tearout: 0.61
		in ³ (1/6t*w^2)	Shear Plate Rupture: 0.27
5-	32.0007		Shear Plate Block Shear: 0.61
Bolt Shear - Elastic Vect	or Metho	d: (AISC p. 7-7, 7-8)	Shear Plate Flexural Rupture: 0.30
Bolt Group I _p =		in4/in2	Shear Plate Yielding & Flexural: 0.32
r _{pv} =	36.25	k (Vu/# Bolts)	Min. Joist TC to Plate Weld:
		k (Mu*L _{i1} /I _o)	5 /16th x 9 " Fillet Weld
Hm =		k (rmx *Nc) Nc = 1 column of bolts	,
Ru =	52.30	2 2 1/2	
Ru / ϕ Rn =	0.83	< 1.0 OK	
	0.00		
Bolt Bearing & Tearout:	(AISC J3.	11)	
Bearing Rnb =	174.00	k/bolt (2.4*Db*t*Fu) AISC J3-6a	
L _{ch} =	1.19	in (d _e - Lh/2)	
Horizontal Tearout Rnt =	82.65	k/bolt (1.2*L _{ch} *t*Fu) AISC J3-6c	
Ru =	52.30	k (worst case bolt shear)	
r _{mx} =	37.70	k (worst case horiz. bolt shear)	
$\phi =$	0.75	(AISC J3.11)	
Bearing Ru / ϕ Rnb =	0.40	< 1.0 OK	
Tearout r _{mx} / φRnt =	0.61	< 1.0 OK	NOTE: FOR VISUAL FORCE SCHEMATIC ONLY

NEW MILLENNIUM


A Steel Dynamics Company

JOB NAME:	JOB #:		
LOCATION:	NMBS U.F. #3 Joist End Plate	DATE:	3/18/2025

Shear Plate Rupture: (AISC J4.2) Crushed Hole Width, W' = 1.4375 in (plate hole + 1/16" Crushed width) Net Plastic Modulus, $Z_{net} = 39.97$ in³ (Z - W'*t*d_{hole}) d_{hole} = 6.28125 ϕ Vn = 329.51 k (ϕ = 0.75, ϕ *.60*Fu*Ae) AISC J4-4 ϕ Mn = 1738.73 k*in (ϕ = 0.75, ϕ *Fu*Z) Ru / ϕ Rn = 0.27 < 1.0 OK $(Vu/\phi Vn)^2 + (Mu/\phi Mn)^2$ Shear Plate Block Shear: (AISC J4.3) Vertical Direction Gross Area in Shear, Agv = 13.25 in² (t*(d_e+(Nb-1)*S) Note: Use of Lh for determination of Net Net Area in Shear, Anv= 7.50 in² Agv-(Nb*W')*t Plate Area, allows for the slots to be in either the joist end plate or the beam tab. Net Area in Tension, Ant= 1.19 in² (t*(d_e-Lh/2)) Gross Area, ϕ Rn = 266.31 k (0.75*(0.6*Fy*Agy+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line Net Area, ϕ Rn = 247.41 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5 Horizontal Direction Note: Use of Lh for determination of Net Gross Area in Shear, Agv= 4.00 in² (2*t*d_e) Plate Area, allows for the slots to be in either the joist end plate or the beam tab. Net Area in Shear, Anv= 2.38 $in^2 (2*t*(d_e-Lh/2))$ Net Area in Tension, Ant= 6.94 in² (t*((Nb-1)*S-(Nb-1)*W) Gross Area, ϕ Rn = 366.58 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line Net Area, ϕ Rn = 363.77 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5 φRn = 247.41 k Controls 0.61 < 1.0 OK (Vu²+Hm²)^{1/2}/∲Rn

NOTE: SCHEMATIC ONLY, HOLES OR PLATE MAY VARY

Shear Plate Flexural Rupture: (AISC F11)

Yielding Mc =1587.6k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1</th>Lateral-Torsional Buckling Check:45.5Lb*d/t^2, Lb = e<0.08*E/Fy Lateral Torsional Buckling does not apply</td>Lateral-Torsional Buckling, Mc =N/Ak*inRu / ϕ Rn =0.30<1.0 OK (Mu/Mc)</td>

Shear Plate Yielding & Flexural Strength: (AISC 10-8)

 $\label{eq:constraint} \begin{array}{rcl} Vc = & 302.4 & k \ (\phi = 1.0, \ \phi^{*}0.6^{*}Fy^{*}Ag) \ AISC \ J4-3 \\ & Yielding \ Mc = & 1587.6 & k^{*}in \ (\phi = 0.9, \ \phi^{*}(Fy^{*}Z<1.5Fy^{*}S)) \ AISC \ F11-1 \\ \ Lateral-Torsional \ Buckling \ Check: & 45.5 & Lb^{*}d/t^{2}, \ Lb = e & <0.08^{*}E/Fy \ Lateral \ Torsional \ Buckling \ does \ not \ apply \\ \ Lateral-Torsional \ Buckling, \ Mc = & N/A & k^{*}in \\ & Ru \ / \ \phi \ Rn = & \textbf{0.32} & <\textbf{1.0 \ OK} \ \ (Vu/Vc)^{2} + (Mu/Mc)^{2} \ \ AISC \ 10-8 \end{array}$

Joist Plate Weld (Angle = 0 deg. & C₁ = 1.00 E70 Electrode):

Length of Plate Weld L_w =	9 in (w-(H-1.25)-	0.25")
a _y =	0.2 AISC Table 8-4	a_y = (Weld Centroid - TC Centroid) / L_w
k _y =	0.4 AISC Table 8-4	k_y = Weld Spacing / L _w
Cy =	3.47 (y-axis weld ecc	entricity, AISC Table 8-4)
D _{min} =	5 /16ths of an inc	h Fillet Weld Size (min)

$\langle \rangle$			
A Steel Dynamics Company			
JOB NAME:	JOB #:		
LOCATION:	NMBS Beam Tab U.F. #3, U.F. #3A	DATE:	3/18/2025

AISC 16TH - p. 10-49 (Extended Configuration)

Holes must satisfy AISC J3.3

Г

Horizontal Axial forces (seismic or wind) if present, to be transferred from beam to joist via tie plate

Beam Tab Plate, Fu =	58	ksi				
Beam Tab Plate, Fy =	36	ksi				
Beam Tab Plate Depth, d=	15.25	in				
Beam Tab Thickness, t=	0.75	in				
Beam Tab Edge Distances, d _e =	2	in	L _{i1} =	5.625		
e =	3.25	in	L _{i2} =	1.875		
Vertical Shear , Vu=	145	k (LRFD)	L _{i3} =	0		
Vertical Ecc. Moment , Mu=	471.25	k*in (LRFD)	L _{i4} =			
Bolt Diameter, Db =	1.25	in	-14 L ₁₅ =			
Bolt Shear Capacity ϕ Rn =	62.7	k	L 15 -	U		
# of Bolts, Nb=	4	Spreadsheet design limitation, max. 10 bolts)				
Spacing of Bolt Group, S=	3.75	in				
C.G. of Bolt Group =	5.625	in				
Fnv/0.9 =		ksi (Table J3.2, A490-N Bolts)				
Short Slotted Hole, Lh =	1.63	in				
				Stress Ra	tio Results:	
Ab=	1.23	in ² (Bolt Area)			Bolt Shear (V&M): 0	0.83
C'=		AISC Eq. 7-17			Bolt Bearing & Tearout: 0	
		k*in (Fnv/0.9*Ab*C', Eq. 10-7)			Shear Tab Rupture: 0	
Max. Beam Tab Thickness, tmax =		in (6*Mmax)/(Fy*d ²) AISC Eq. 10-6			Shear Tab Block Shear: (0.81
· · · · · · · · · · · · · · · · · · ·				Sh	ear Tab Flexural Rupture: 0	
Gross Plate Area, Ag =	11.4375	in ²		Shea	r Tab Yielding & Flexural: 0	0.46
Effective Plate Area, Ae =		-			6 /16" Tab Weld: 0	
		in ³ (1/4t*d^2)			- ,	
		in ³ (1/6t*d^2)				
S _{net} –	29.07					
Bolt Shear - Elastic Vect	or Metho	d: (AISC n. 7-7. 7-8)				
Bolt Group I _n =						
· •		•				
		k (Vu/# Bolts)				
		k (Mu* L_{i1}/I_p)				
		k (rmx *Nc) Nc = 1 column of bolts				
		$k (r_{py}^{2} + r_{mx}^{2})^{1/2}$				
Ru /	0.83	< 1.0 OK				
		11)				
Bolt Bearing & Tearout:		⊥⊥) k/bolt (2.4*Db*t*Fu) AISC J3-6a				
•	1.19	, , ,				
						τ
Horizontal Tearout Rnt =	61.99	k/bolt (1.2*L _{ch} *t*Fu) AISC J3-6c				۲
Ru =	E2 20	k (worst case bolt cheer)				-
		k (worst case bolt shear)				~
r _{mx} =	37.70	k (worst case horiz. bolt shear)				
φ =	0.75	(AISC 12.11)				
φ = Bearing Ru / φRnb =	0.75 0.53	(AISC J3.11) < 1.0 OK				
Tearout $r_{mx} / \phi Rnt =$	0.55	< 1.0 OK				
	0.01	× 1.0 OK		NO	TE: FOR VISUAL FORCE SCHEMAT	IC ONLY

-

A Steel Dynamics Company

JOB NAME: LOCATION: JOB #: NMBS Beam Tab U.F. #3, U.F. #3A

DATE:

3/18/2025

Shear Tab Rupture: (AISC J4.2) Crushed Hole Width, W' = 1.4375 in (plate hole + 1/16" Crushed width) Net Plastic Modulus, $Z_{net} = 27.43$ in³ (Summation of A*d of net plate section) ϕ Vn = 190.86 k (ϕ = 0.75, ϕ *.60*Fu*Ae) AISC J4-4 ϕ Mn = 1193.36 k*in (ϕ = 0.75, ϕ *Fu*Z) Ru / ϕ Rn = 0.73 < 1.0 OK $(Vu/\phi Vn)^2 + (Mu/\phi Mn)^2$ Shear Tab Block Shear: (AISC J4.3) Vertical Direction Gross Area in Shear, Agv= 9.94 in² (t*(d_e+(Nb-1)*S) Net Area in Shear, Anv= 5.63 in² Agv-(Nb*W')*t Net Area in Tension, Ant= 0.89 in^2 (t*(d_e-Lh/2) Gross Area, $\phi Rn = 199.73 \text{ k} (0.75^{*}(0.6^{*}Fy^{*}Agv+Ubs^{*}Fu^{*}Ant))$ Ubs = 1.0 for single bolt line Net Area, $\phi Rn = 185.55 \text{ k} (0.75^{*}(0.6^{*}Fu^{*}Anv+Ubs^{*}Fu^{*}Ant)) AISC J4-5$ NOTE: SCHEMATIC ONLY, HOLES MAY VARY Horizontal Direction Gross Area in Shear, Agv= 3.00 in² (2*t*d_e) Net Area in Shear, Anv= 1.78 in² (2*t*(d_e-*Lh/2) Net Area in Tension, Ant= 5.20 in² (t*((Nb-1)*S-(Nb-1)*W) Gross Area, ϕ Rn = 274.94 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line Net Area, ϕ Rn = 272.83 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5 φRn = 185.55 k Controls **0.81 < 1.0 OK** $(Vu^2 + Hm^2)^{1/2}/\phi Rn$ Shear Tab Flexural Rupture: (AISC F11) Yielding Mc = 1412.8 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1 Lateral-Torsional Buckling Check: 88.1 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3 Lateral-Torsional Buckling, Mc = 1412.8 k*in AISC F11-3 Ru / ϕ Rn = 0.33 < 1.0 OK (Mu/Mc) Shear Tab Yielding & Flexural Strength: (AISC 10-8) Vc = 247.1 k (ϕ = 1.0, ϕ *0.6*Fy*Ag) AISC J4-3 Yielding Mc = 1412.8 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1 Lateral-Torsional Buckling Check: 88.1 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3 Lateral-Torsional Buckling, Mc = 1412.8 k*in AISC F11-3 Ru / ϕ Rn = 0.46 < 1.0 OK $(Vu/Vc)^2 + (Mu/Mc)^2$ AISC 10-8 Shear Tab Weld: 0.33 in. $t_{wmin} = (t^*Fy^*3^{1/2})/(2^*F_{EXX})$, $F_{EXX} = 70$ ksi Electrode, AISC Engineering Journal, Vol. 46, 2009 Min. Weld Thickness t_{wmin} = Weld Provided t... = 0.375 in Min. Plate Thickness = 0.64 in (AISC Eq. 9-7, 6.19*D/Fu) GOOD $\phi Rw = 254.72 \text{ k} (\phi * 0.6 * F_{EXX} * 0.707 * t_w * d * 2)$ 0.57 < 1.0 OK