

A Steel Dynamics Company

JOB NAME:	JOB #:		
LOCATION:	NMBS U.F. #3A Joist End Plate	DATE:	3/18/2025

AISC 16TH - p. 10-49 (Extended Configuration)

Holes must satisfy AISC J3.3

Horizontal Axial forces (seismic or wind) if present, to be transferred from beam to joist via tie plate

Joist Plate, Fu =	58	ksi TC Hold Back Distance (H) =	9 i	n	Joist Plate w = 15 in
Joist Tab Plate, Fy =	36	ksi TC Angle Size =	3.5 i	n	Joist Plate d = <mark>15.25</mark> in
Joist Plate, d or w=	15	in Joist Plate Hold-Down from TC =	0.75 i	n	
Joist Plate Thickness, t=	1	in			
Joist Plate Edge Distances, de=	2	in			
e =	3.25	in	L _{i1} =	5.625	
Vertical Shear , Vu=	145	k (LRFD)	L _{i2} =	1.875	
Vertical Ecc. Moment , Mu=	471.25	k*in (LRFD)	L _{i3} =	0	
Bolt Diameter, Db =	1.25	in	L _{i4} =	0	
Bolt Shear Capacity φRn =	62.7	k (A490-N)	L _{i5} =	0	
# of Bolts, Nb=	4	(Spreadsheet design limitation, max. 10 bolts)			
Spacing of Bolt Group, S=	3.75	in			
Vert. C.G. of Bolt Group =	5.625	in			
Fnv/0.9 =	75.56	ksi (Table J3.2, A490-N Bolts)			
Short Slotted Hole, Lh =	1.63	in (conservative design, allows for slotted holes in joist plate)			
Joist Top Chord Axial Force, V_{TC} =	217.5	k (LRFD)Assumes 1.5:1 End Web Slope			

Gross Plate Area, Ag = 15 in²

Effective Plate Area, Ae = 13.63 in² Z = 56.25 in³ (1/4t*w^2) S = 37.5 in³ (1/6t*w^2)

Bolt Shear - Elastic Vector Method: (AISC p. 7-7, 7-8)

$$\begin{split} \text{Bolt Group I}_p = & 70.31 & \text{in4/in2} \\ r_{py} = & 36.25 & \text{k (Vu/\# Bolts)} \\ r_{mx} = & 37.70 & \text{k (Mu*L}_{11}/I_p) \\ \text{Hm} = & 37.70 & \text{k (rmx *Nc) Nc} = 1 \text{ column of bolts} \end{split}$$

Ru = 52.30 k $(r_{py}^2 + r_{mx}^2)^{1/2}$ Ru / ϕ Rn = **0.83** < **1.0 OK**

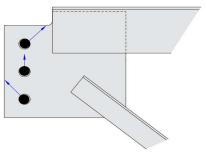
Bolt Bearing & Tearout: (AISC J3.11)

Bearing Rnb = 174.00 k/bolt (2.4*Db*t*Fu) AISC J3-6a

 $L_{ch} = 1.19$ in $(d_e - Lh/2)$

Horizontal Tearout Rnt = 82.65 k/bolt $(1.2*L_{ch}*t*Fu)$ AISC J3-6c

 $\begin{aligned} \text{Ru} = & 52.30 & \text{k (worst case bolt shear)} \\ \text{r}_{\text{mx}} = & 37.70 & \text{k (worst case horiz. bolt shear)} \end{aligned}$


 $\phi = 0.75$ (AISC J3.11)

Bearing Ru / ϕ Rnb = 0.40 < 1.0 OK Tearout r_{mx} / ϕ Rnt = 0.61 < 1.0 OK Stress Ratio Results:

Bolt Shear (V&M): 0.83
Bolt Bearing & Tearout: 0.61
Shear Plate Rupture: 0.22
Shear Plate Block Shear: 0.61
Shear Plate Flexural Rupture: 0.26
Shear Plate Yielding & Flexural: 0.27

Min. Joist TC to Plate Weld:

6 /16th x 7 " Fillet Weld

NOTE: FOR VISUAL FORCE SCHEMATIC ONLY

A Steel Dynamics Company

JOB NAME:	JOB #:		
LOCATION:	NMBS U.F. #3A Joist End Plate	DATE:	3/18/2025

Shear Plate Rupture: (AISC J4.2)

Crushed Hole Width, W' = 1.4375 in (plate hole + 1/16" Crushed width)

Net Plastic Modulus, $Z_{net} = 46.50 \text{ in}^3 (Z - W'*t*d_{hole})$ $d_{hole} = 6.78125$

 ϕ Vn = 355.61 k (ϕ = 0.75, ϕ *.60*Fu*Ae) AISC J4-4

 ϕ Mn = 2022.83 k*in (ϕ = 0.75, ϕ *Fu*Z)

Ru / ϕ Rn = **0.22** < **1.0 OK** $(Vu/\phi Vn)^2 + (Mu/\phi Mn)^2$

Shear Plate Block Shear: (AISC J4.3)

Vertical Direction

Gross Area in Shear, Agv= $13.25 \text{ in}^2 (t*(d_e+(Nb-1)*S))$

Net Area in Shear, Anv= 7.50 in² Agv-(Nb*W')*t Net Area in Tension, Ant= $1.19 \text{ in}^2 (t*(d_e-Lh/2))$

Gross Area, ϕ Rn = 266.31 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Note: Use of Lh for determination of Net

Note: Use of Lh for determination of Net

Plate Area, allows for the slots to be in either the joist end plate or the beam tab.

Net Area, ϕ Rn = 247.41 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

Horizontal Direction

Gross Area in Shear, Agv= 4.00 in² (2*t*d_e)

Plate Area, allows for the slots to be in either the joist end plate or the beam tab. Net Area in Shear, Anv= $2.38 in^2 (2*t*(d_e-Lh/2)$

Net Area in Tension, Ant= 6.94 in² (t*((Nb-1)*S-(Nb-1)*W)

Gross Area, ϕ Rn = 366.58 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 363.77 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

 ϕ Rn = **247.41** k Controls

0.61 < 1.0 OK $(Vu^2+Hm^2)^{1/2}/\phi Rn$ $Ru / \phi Rn =$

Shear Plate Flexural Rupture: (AISC F11)

Yielding Mc = 1822.5 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 48.8 Lb*d/t^2, Lb = e <0.08*E/Fy Lateral Torsional Buckling does not apply

Lateral-Torsional Buckling, Mc = N/A k*in

Ru / ϕ Rn = **0.26** < **1.0 OK** (Mu/Mc)

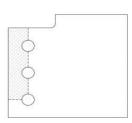
Shear Plate Yielding & Flexural Strength: (AISC 10-8)

Vc = 324 k (ϕ = 1.0, ϕ *0.6*Fy*Ag) AISC J4-3

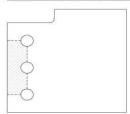
Yielding Mc = 1822.5 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

48.8 Lb*d/t^2, Lb = e <0.08*E/Fy Lateral Torsional Buckling does not apply Lateral-Torsional Buckling Check:

Lateral-Torsional Buckling, Mc = N/A k*in


> **0.27 < 1.0 OK** $(Vu/Vc)^2 + (Mu/Mc)^2$ AISC 10-8 $Ru / \phi Rn =$

Joist Plate Weld (Angle = 0 deg. & C_1 = 1.00 E70 Electrode):


Length of Plate Weld L_w = 7 in (w-(H-1.25)-0.25")

0.2 AISC Table 8-4 a_v = (Weld Centroid - TC Centroid) / L_w

0.4 AISC Table 8-4 k_v = Weld Spacing / L_w Cy = 3.47 (y-axis weld eccentricity, AISC Table 8-4) $D_{min} =$ 6 /16ths of an inch Fillet Weld Size (min)

NOTE: SCHEMATIC ONLY, HOLES OR PLATE MAY VARY

JOB NAME:	JOB #:		
LOCATION:	NMBS Beam Tab U.F. #3, U.F. #3A	DATE:	3/18/2025

AISC 16TH - p. 10-49 (Extended Configuration)

Holes must satisfy AISC J3.3

Horizontal Axial forces (seismic or wind) if present, to be transferred from beam to joist via tie plate

Beam Tab Plate, Fu =	58	ksi
Beam Tab Plate, Fy =	36	ksi
Beam Tab Plate Depth, d=	15.25	in
Beam Tab Thickness, t=	0.75	in
Beam Tab Edge Distances, d _e =	2	in
e =	3.25	in
Vertical Shear , Vu=	145	k (LRFD)
Vertical Ecc. Moment , Mu=	471.25	k*in (LRFD)
Bolt Diameter, Db =	1.25	in
Bolt Shear Capacity φRn =	62.7	k
# of Bolts, Nb=	4	(Spreadsheet design limitation, max. 10 bolts)
Spacing of Bolt Group, S=	3.75	in
C.G. of Bolt Group =	5.625	in
Fnv/0.9 =	75.56	ksi (Table J3.2, A490-N Bolts)
Short Slotted Hole, Lh =	1.63	in
Ab=	1.23	in ² (Bolt Area)
C'=	14.07	AISC Eq. 7-17
Mmax =	1304.62	k*in (Fnv/0.9*Ab*C', Eq. 10-7)
Max. Beam Tab Thickness, tmax =	0.93	in (6*Mmax)/(Fy*d ²) AISC Eq. 10-6
		2
Gross Plate Area, Ag =	11.4375	in ²
Effective Plate Area, Ae =	7.31	in ²

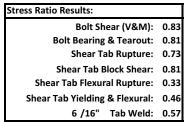
 $Z = 43.6055 \text{ in}^3 (1/4t*d^2)$ $S_{net} = 29.07 \text{ in}^3 (1/6t*d^2)$

Bolt Shear - Elastic Vector Method: (AISC p. 7-7, 7-8)

Hm = 37.70 k (rmx *Nc) Nc = 1 column of bolts

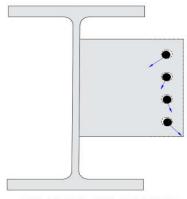
Ru = 52.30 k $(r_{py}^2 + r_{mx}^2)^{1/2}$ Ru / ϕ Rn = **0.83** < **1.0 OK**

Bolt Bearing & Tearout: (AISC J3.11)


Bearing Rnb = 130.50 k/bolt (2.4*Db*t*Fu) AISC J3-6a

 $L_{ch} = 1.19$ in $(d_e - Lh/2)$

Horizontal Tearout Rnt = 61.99 k/bolt (1.2*L_{ch}*t*Fu) AISC J3-6c


 $\begin{aligned} \text{Ru} = & 52.30 \quad \text{k (worst case bolt shear)} \\ \text{r}_{\text{mx}} = & 37.70 \quad \text{k (worst case horiz. bolt shear)} \end{aligned}$

 $\begin{array}{lll} \varphi = & 0.75 & \text{(AISC J3.11)} \\ \text{Bearing Ru / } \varphi \text{Rnb} = & \textbf{0.53} & \textbf{< 1.0 OK} \\ \text{Tearout r}_{\text{mx}} \, / \, \varphi \text{Rnt} = & \textbf{0.81} & \textbf{< 1.0 OK} \end{array}$

 $L_{i1} = 5.625$ $L_{i2} = 1.875$ $L_{i3} = 0$

0

NOTE: FOR VISUAL FORCE SCHEMATIC ONLY

A Steel Dynamics Company

 JOB NAME:
 JOB #:

 LOCATION:
 NMBS Beam Tab U.F. #3, U.F. #3A
 DATE:
 3/18/2025

Shear Tab Rupture: (AISC J4.2)

Crushed Hole Width, W' = 1.4375 in (plate hole + 1/16" Crushed width) Net Plastic Modulus, Z_{net} = 27.43 in (Summation of A*d of net plate section)

 ϕ Vn = 190.86 k (ϕ = 0.75, ϕ *.60*Fu*Ae) AISC J4-4

 ϕ Mn = 1193.36 k*in (ϕ = 0.75, ϕ *Fu*Z)

Ru / ϕ Rn = **0.73 < 1.0 OK** $(Vu/\phi Vn)^2 + (Mu/\phi Mn)^2$

Shear Tab Block Shear: (AISC J4.3)

Vertical Direction

Gross Area, ϕ Rn = 199.73 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

NOTE: SCHEMATIC ONLY, HOLES MAY VARY

Net Area, ϕ Rn = 185.55 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

Horizontal Direction

Gross Area in Shear, Agv= 3.00 in² $(2*t*d_e)$ Net Area in Shear, Anv= 1.78 in² $(2*t*(d_e-*Lh/2)$

Net Area in Tension, Ant= 5.20 in² (t*((Nb-1)*S-(Nb-1)*W)

Gross Area, ϕ Rn = 274.94 k (0.75*(0.6*Fy*Agv+Ubs*Fu*Ant)) Ubs = 1.0 for single bolt line

Net Area, ϕ Rn = 272.83 k (0.75*(0.6*Fu*Anv+Ubs*Fu*Ant)) AISC J4-5

 ϕ Rn = **185.55** k Controls

Ru / ϕ Rn = 0.81 < 1.0 OK $(Vu^2 + Hm^2)^{1/2}/\phi$ Rn

Shear Tab Flexural Rupture: (AISC F11)

Yielding Mc = 1412.8 k*in (ϕ = 0.9, ϕ *(Fy*Z<1.5Fy*S)) AISC F11-1

Lateral-Torsional Buckling Check: 88.1 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

 $\begin{array}{cccc} \mbox{Lateral-Torsional Buckling, Mc} = & 1412.8 & k*in & \mbox{AISC F11-3} \\ \mbox{Ru} \ / \ \varphi \mbox{Rn} = & \mbox{\bf 0.33} & \mbox{\bf < 1.0 OK} & (\mbox{Mu/Mc}) \\ \end{array}$

Shear Tab Yielding & Flexural Strength: (AISC 10-8)

 $Vc = 247.1 \text{ k } (\phi = 1.0, \phi*0.6*Fy*Ag) \text{ AISC J4-3}$

Yielding Mc = 1412.8 $k*in (\phi = 0.9, \phi*(Fy*Z<1.5Fy*S))$ AISC F11-1

Lateral-Torsional Buckling Check: 88.1 Lb*d/t^2, Lb = e Check for Lateral Torsional Buckling per AISC F11-3

Lateral-Torsional Buckling, Mc = 1412.8 k*in AISC F11-3

Ru / ϕ Rn = **0.46** < **1.0 OK** $(Vu/Vc)^2 + (Mu/Mc)^2$ AISC 10-8

Shear Tab Weld:

Min. Weld Thickness $t_{wmin} = 0.33$ in. $t_{wmin} = (t^*Fy^*3^{1/2})/(2^*F_{EXX})$, $F_{EXX} = 70$ ksi Electrode, AISC Engineering Journal, Vol. 46, 2009

Weld Provided t_w = 0.375 in

Min. Plate Thickness = 0.64 in (AISC Eq. 9-7, 6.19*D/Fu) GOOD

 ϕ Rw = 254.72 k (ϕ *0.6*F_{EXX}*0.707*t_w*d*2)

 $Ru / \phi Rn = 0.57 < 1.0 OK$